RESUMO
Luteolin, a flavonoid, is mainly found in various vegetables and fruits, including carrots, cabbages, onions, parsley, apples, broccoli, and peppers. Extensive research in vivo and in vitro has been performed to explore its role in disease prevention and treatment. Moreover, this compound possesses the ability to combat cancer by modulating cell-signaling pathways across various types of cancer. The studies have confirmed that luteolin can inhibit cancer-cell survival and proliferation, angiogenesis, invasion, metastasis, mTOR/PI3K/Akt, STAT3, Wnt/ß-catenin, and cell-cycle arrest, and induce apoptosis. Further, scientific evidence describes that this compound plays a vital role in the up/down-regulation of microRNAs (miRNAs) in cancer therapy. This review aims to outline the anti-cancer mechanisms of this compound and its molecular targets. However, a knowledge gap remains regarding the studies on its safety and efficacy and clinical trials. Therefore, it is essential to conduct more research based on safety, efficacy, and clinical trials to explore the beneficial role of this compound in disease management, including cancer.
Assuntos
Luteolina , Neoplasias , Humanos , Luteolina/farmacologia , Flavonoides/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Neoplasias/tratamento farmacológico , Inflamação/tratamento farmacológico , Apoptose , Proliferação de Células , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-akt/metabolismoRESUMO
Natural products and their bioactive compounds have been used for centuries to prevent and treat numerous diseases. Kaempferol, a flavonoid found in vegetables, fruits, and spices, is recognized for its various beneficial properties, including its antioxidant and anti-inflammatory potential. This molecule has been identified as a potential means of managing different pathogenesis due to its capability to manage various biological activities. Moreover, this compound has a wide range of health-promoting benefits, such as cardioprotective, neuroprotective, hepatoprotective, and anti-diabetic, and has a role in maintaining eye, skin, and respiratory system health. Furthermore, it can also inhibit tumor growth and modulate various cell-signaling pathways. In vivo and in vitro studies have demonstrated that this compound has been shown to increase efficacy when combined with other natural products or drugs. In addition, kaempferol-based nano-formulations are more effective than kaempferol treatment alone. This review aims to provide detailed information about the sources of this compound, its bioavailability, and its role in various pathogenesis. Although there is promising evidence for its ability to manage diseases, it is crucial to conduct further investigations to know its toxicity, safety aspects, and mechanism of action in health management.
Assuntos
Anti-Inflamatórios , Inflamação , Quempferóis , Quempferóis/farmacologia , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Animais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/químicaRESUMO
Cancer is one of the leading global causes of death in both men and women. Colorectal cancer (CRC) alone accounts for â¼10 % of total new global cases and poses an over 4% lifetime risk of developing cancer. Recent advancements in the field of biotechnology and microbiology concocted novel microbe-based therapies to treat various cancers, including CRC. Microbes have been explored for human use since centuries, especially for the treatment of various ailments. The utility of microbes in cancer therapeutics is widely explored, and various bacteria, fungi, and viruses are currently in use for the development of cancer therapeutics. The human gut hosts about 100 trillion microbes that release their metabolites in active, inactive, or dead conditions. Microbial secondary metabolites, proteins, immunotoxins, and enzymes are used to target cancer cells to induce cell cycle arrest, apoptosis, and death. Various approaches, such as dietary interventions, the use of prebiotics and probiotics, and fecal microbiota transplantation have been used to modulate the gut microbiota in order to prevent or treat CRC pathogenesis. The present review highlights the role of the gut microbiota in CRC precipitation, the potential mechanisms and use of microorganisms as CRC biomarkers, and strategies to modulate microbiota for the prevention and treatment of CRC.
Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Microbiota , Probióticos , Masculino , Humanos , Feminino , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/terapia , Neoplasias Colorretais/metabolismo , Prebióticos , Probióticos/uso terapêuticoRESUMO
Cancer is one of the main causes of death in all developed and developing countries. Various factors are involved in cancer development and progression, including inflammation and alterations in cellular processes and signaling transduction pathways. Natural compounds have shown health-promoting effects through their antioxidant and anti-inflammatory potential, having an important role in the inhibition of cancer growth. In this regard, formononetin, a type of isoflavone, plays a significant role in disease management through the modulation of inflammation, angiogenesis, cell cycle, and apoptosis. Furthermore, its role in cancer management has been proven through the regulation of different signal transduction pathways, such as the signal transducer and activator of transcription 3 (STAT 3), Phosphatidyl inositol 3 kinase/protein kinase B (PI3K/Akt), and mitogen activating protein kinase (MAPK) signaling pathways. The anticancer potential of formononetin has been reported against various cancer types, such as breast, cervical, head and neck, colon, and ovarian cancers. This review focuses on the role of formononetin in different cancer types through the modulation of various cell signaling pathways. Moreover, synergistic effect with anticancer drugs and methods to improve bioavailability are explained. Thus, detailed studies based on clinical trials are required to explore the potential role of formononetin in cancer prevention and treatment.
Assuntos
Antineoplásicos , Isoflavonas , Neoplasias , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Neoplasias/tratamento farmacológicoRESUMO
Cancer is the principal cause of death and its incidence is increasing continuously worldwide. Various treatment approaches are in practice to treat cancer, but these treatment strategies may be associated with severe side effects and also produce drug resistance. However, natural compounds have established their role in cancer management with minimal side effects. In this vista, kaempferol, a natural polyphenol, mainly found in vegetables and fruits, has been revealed to have many health-promoting effects. Besides its health-promoting potential, its anti-cancer potential has also been described in in vivo as well as in in vitro studies. The anti-cancer potential of kaempferol has been proven through modulation of cell signaling pathways in addition to the induction of apoptosis and cell cycle arrest in cancer cells. It leads to the activation of tumor suppressor genes, inhibition of angiogenesis, PI3K/AKT pathways, STAT3, transcription factor AP-1, Nrf2 and other cell signaling molecules. Poor bioavailability of this compound is one of the major limitations for its proper and effective disease management actions. Recently, some novel nanoparticle-based formulations have been used to overcome these limitations. The aim of this review is to provide a clear picture regarding the mechanism of action of kaempferol in different cancers through the modulation of cell signaling molecules. Besides this, strategies to improve the efficacy and synergistic effects of this compound have also been described. However, more studies are needed based on clinical trials to fully explore the therapeutic role of this compound, especially in cancer treatment.
Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Quempferóis/metabolismo , Neoplasias/tratamento farmacológico , Transdução de Sinais , Inflamação , ApoptoseRESUMO
Cancer is a major public health concern worldwide and main burden of the healthcare system. Regrettably, most of the currently used cancer treatment approaches such as targeted therapy, chemotherapy, radiotherapy and surgery usually cause adverse complications including hair loss, bone density loss, vomiting, anemia and other complications. However, to overcome these limitations, there is an urgent need to search for the alternative anticancer drugs with better efficacy as well as less adverse complications. Based on the scientific evidences, it is proven that naturally occurring antioxidants present in medicinal plants or their bioactive compounds might constitute a good therapeutic approach in diseases management including cancer. In this regard, myricetin, a polyhydroxy flavonol found in a several types of plants and its role in diseases management as anti-oxidant, anti-inflammatory and hepato-protective has been documented. Moreover, its role in cancer prevention has been noticed through modulation of angiogenesis, inflammation, cell cycle arrest and induction of apoptosis. Furthermore, myricetin plays a significant role in cancer prevention through the inhibition of inflammatory markers such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (Cox-2). Moreover, myricetin increases the chemotherapeutic potential of other anticancer drugs through modulation of cell signaling molecules activity. This review elaborates the information of myricetin role in cancer management through modulating of various cell-signaling molecules based on in vivo and in vitro studies. In addition, synergistic effect with currently used anticancer drugs and approaches to improve bioavailability are described. The evidences collected in this review will help different researchers to comprehend the information about its safety aspects, effective dose for different cancers and implication in clinical trials. Moreover, different challenges need to be focused on engineering different nanoformulations of myricetin to overcome the poor bioavailability, loading capacity, targeted delivery and premature release of this compound. Furthermore, some more derivatives of myricetin need to be synthesized to check their anticancer potential.
Assuntos
Antineoplásicos , Neoplasias , Humanos , Transdução de Sinais , Inflamação/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Neoplasias/tratamento farmacológico , ApoptoseRESUMO
The innovative advances in transforming clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) into different variants have taken the art of genome-editing specificity to new heights. Allosteric modulation of Cas9-targeting specificity by sgRNA sequence alterations and protospacer adjacent motif (PAM) modifications have been a good lesson to learn about specificity and activity scores in different Cas9 variants. Some of the high-fidelity Cas9 variants have been ranked as Sniper-Cas9, eSpCas9 (1.1), SpCas9-HF1, HypaCas9, xCas9, and evoCas9. However, the selection of an ideal Cas9 variant for a given target sequence remains a challenging task. A safe and efficient delivery system for the CRISPR/Cas9 complex at tumor target sites faces considerable challenges, and nanotechnology-based stimuli-responsive delivery approaches have significantly contributed to cancer management. Recent innovations in nanoformulation design, such as pH, glutathione (GSH), photo, thermal, and magnetic responsive systems, have modernized the art of CRISPR/Cas9 delivery approaches. These nanoformulations possess enhanced cellular internalization, endosomal membrane disruption/bypass, and controlled release. In this review, we aim to elaborate on different CRISPR/Cas9 variants and advances in stimuli-responsive nanoformulations for the specific delivery of this endonuclease system. Furthermore, the critical constraints of this endonuclease system on clinical translations towards the management of cancer and prospects are described.
Assuntos
Sistemas CRISPR-Cas , Neoplasias , Humanos , Sistemas CRISPR-Cas/genética , Proteína 9 Associada à CRISPR/metabolismo , Edição de Genes , Neoplasias/genética , Neoplasias/terapia , TecnologiaRESUMO
Breast cancer is one of the most prevalent and reoccurring cancers and the second most common reason of death in women. Despite advancements in therapeutic strategies for breast cancer, early tumor recurrence and metastasis in patients indicate resistance to chemotherapeutic medicines, such as paclitaxel due to the abnormal expression of ER and EGF2 in breast cancer cells. Therefore, the development of alternatives to paclitaxel is urgently needed to overcome challenges involving drug resistance. An increasing number of studies has revealed miRNAs as novel natural alternative substances that play a crucial role in regulating several physiological processes and have a close, adverse association with several diseases, including breast cancer. Due to the therapeutic potential of miRNA and paclitaxel in cancer research, the current review focuses on the differential roles of various miRNAs in breast cancer development and treatment. miRNA delivery to a specific target site, the development of paclitaxel and miRNA formulations, and nanotechnological strategies for the delivery of nanopaclitaxel in the management of breast cancer are discussed. These strategies involve improving the cellular uptake and bioavailability and reducing the toxicity of free paclitaxel to achieve accumulation tumor site. Furthermore, a molecular docking study was performed to ascertain the enhanced anticancer activity of the nanoformulation of ANG1005 and Abraxane. An in silico analysis revealed that ANG1005 and Abraxane nanoformulations have superior and significantly enhanced interactions with the proteins α-tubulin and Bcl-2. Therefore, ANG1005 and Abraxane may be more suitable in the therapeutic management of breast cancer than the existing free paclitaxel. miRNAs can revert abnormal gene expression to normalcy; since miRNAs serve as tumor suppressors. Therefore, restoration of particular miRNAs levels as a replacement therapy may be an effective endocrine potential strategy for treating ER positive/ negative breast cancers.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , MicroRNAs/genética , Nanopartículas/administração & dosagem , Nanotecnologia/métodos , Paclitaxel/análogos & derivados , Peptídeos/administração & dosagem , Receptores de Estrogênio/metabolismo , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Neoplasias da Mama/patologia , Simulação por Computador , Gerenciamento Clínico , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Simulação de Acoplamento Molecular , Nanopartículas/química , Paclitaxel/administração & dosagem , Paclitaxel/química , Peptídeos/químicaRESUMO
Pro-inflammatory macrophage polarization is crucial in acute inflammatory diseases like Acute lung injury (ALI), and acute respiratory distress syndrome (ARDS). Prostaglandin E2 (PGE2) is believed to promote inflammation in such cases. Therefore, our study aimed to deliver anti-prostaglandin E synthase 2 small interfering RNA antibodies (anti-PGE2-siRNA) through lipid nanoparticles (LNPs) in RAW264.7 (The murine macrophage cell line) to find a possible cure to the acute inflammatory diseases. LNPs were synthesized by using thin layer evaporation method and were characterized by dynamic light scattering (DLS), Zeta potential, SEM and TEM analysis. The obtained NPs were spherical with an average size of 73 nm and zeta potential +29mV. MTT assay revealed that these NPs were non-toxic in nature. Gel retardation assay displayed 5:2 ratio of siRNA and NPs as the best siRNA:LNPs ratio for the delivery of siRNA into cells. After siRNA delivery by using LNPs, real time gene expression analysis revealed significant decrease in the expression of PGE2. Western blot results confirmed that silencing of PGE2 gene influence inducible nitric oxide synthase (iNOS) and interlukin-1ß (1L-1ß), markers involved in pro-inflammatory macrophage polarization. Our study revealed that LNPs synthesized in present study can be one of the effective methods to deliver anti-PGE2-siRNA to control pro-inflammatory macrophage polarization for the treatment of acute inflammatory response.
RESUMO
(1) Background: SARS-CoV-2 Omicron BA.1 is the most common variation found in most countries and is responsible for 99% of cases in the United States. To overcome this challenge, there is an urgent need to discover effective inhibitors to prevent the emerging BA.1 variant. Natural products, particularly flavonoids, have had widespread success in reducing COVID-19 prevalence. (2) Methods: In the ongoing study, fifteen compounds were annotated from Echium angustifolium and peach (Prunus persica), which were computationally analyzed using various in silico techniques. Molecular docking calculations were performed for the identified phytochemicals to investigate their efficacy. Molecular dynamics (MD) simulations over 200 ns followed by molecular mechanics Poisson-Boltzmann surface area calculations (MM/PBSA) were performed to estimate the binding energy. Bioactivity was also calculated for the best components in terms of drug likeness and drug score. (3) Results: The data obtained from the molecular docking study demonstrated that five compounds exhibited remarkable potency, with docking scores greater than -9.0 kcal/mol. Among them, compounds 1, 2 and 4 showed higher stability within the active site of Omicron BA.1, with ΔGbinding values of -49.02, -48.07, and -67.47 KJ/mol, respectively. These findings imply that the discovered phytoconstituents are promising in the search for anti-Omicron BA.1 drugs and should be investigated in future in vitro and in vivo research.
RESUMO
Gorgostane steroids are isolated from marine organisms and consist of 30 carbon atoms with a characteristic cyclopropane moiety. From the pioneering results to the end of 2021, isolation, biosynthesis, and structural elucidation using 13C-NMR will be used. Overall, 75 compounds are categorized into five major groups: gorgost-5-ene, 5,6-epoxygorgostane, 5,6-dihydroxygorgostane, 9,11-secogorgostane, and 23-demethylgorgostane, in addition to miscellaneous gorgostane. The structural diversity, selectivity for marine organisms, and biological effects of gorgostane steroids have generated considerable interest in the field of drug discovery research.
Assuntos
Organismos Aquáticos/metabolismo , Ciclopropanos/isolamento & purificação , Esteroides/isolamento & purificação , Animais , Ciclopropanos/química , Descoberta de Drogas/métodos , Humanos , Espectroscopia de Ressonância Magnética , Esteroides/químicaRESUMO
A growing amount of information about the different types, functions, and roles played by non-coding RNAs (ncRNAs) is becoming available, as more and more research is done. ncRNAs have been identified as potential therapeutic targets in the treatment of tuberculosis (TB), because they may be essential regulators of the gene network. ncRNA profiling and sequencing has recently revealed significant dysregulation in tuberculosis, primarily due to aberrant processes of ncRNA synthesis, including amplification, deletion, improper epigenetic regulation, or abnormal transcription. Despite the fact that ncRNAs may have a role in TB characteristics, the detailed mechanisms behind these occurrences are still unknown. The dark matter of the genome can only be explored through the development of cutting-edge bioinformatics and molecular technologies. In this review, ncRNAs' synthesis and functions are discussed in detail, with an emphasis on the potential role of ncRNAs in tuberculosis. We also focus on current platforms, experimental strategies, and computational analyses to explore ncRNAs in TB. Finally, a viewpoint is presented on the key challenges and novel techniques for the future and for a wide-ranging therapeutic application of ncRNAs.
Assuntos
Epigênese Genética , Tuberculose , Biologia Computacional/métodos , Redes Reguladoras de Genes , Humanos , RNA não Traduzido/genética , Tuberculose/epidemiologia , Tuberculose/genéticaRESUMO
The roles of medicinal plants or their purified bioactive compounds have attracted attention in the field of health sciences due to their low toxicity and minimal side effects. Baicalein is an active polyphenolic compound, isolated from Scutellaria baicalensis, and plays a significant role in the management of different diseases. Epidemiologic studies have proven that there is an inverse association between baicalein consumption and disease severity. Baicalein is known to display anticancer activity through the inhibition of inflammation and cell proliferation. Additionally, the anticancer potential of baicalein is chiefly mediated through the modulation of various cell-signaling pathways, such as the induction of apoptosis, autophagy, cell cycle arrest, inhibition of angiogenesis, signal transducer and activator of transcription 3, and PI3K/Akt pathways, as well as the regulation of other molecular targets. Therefore, the current review aimed to explore the role of baicalein in different types of cancer along with mechanisms of action. Besides this, the synergistic effects with other anti-cancerous drugs and the nano-formulation based delivery of baicalein have also been discussed.
Assuntos
Flavanonas , Neoplasias , Fosfatidilinositol 3-Quinases , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Neoplasias/tratamento farmacológico , Scutellaria baicalensisRESUMO
Cancer is a main culprit and the second-leading cause of death worldwide. The current mode of treatment strategies including surgery with chemotherapy and radiation therapy may be effective, but cancer is still considered a major cause of death. Plant-derived products or their purified bioactive compounds have confirmed health-promoting effects as well as cancer-preventive effects. Among these products, flavonoids belong to polyphenols, chiefly found in fruits, vegetables and in various seeds/flowers. It has been considered to be an effective antioxidant, anti-inflammatory and to play a vital role in diseases management. Besides these activities, flavonoids have been revealed to possess anticancer potential through the modulation of various cell signaling molecules. In this regard, fisetin, a naturally occurring flavonoid, has a confirmed role in disease management through antioxidant, neuro-protective, anti-diabetic, hepato-protective and reno-protective potential. As well, its cancer-preventive effects have been confirmed via modulating various cell signaling pathways including inflammation, apoptosis, angiogenesis, growth factor, transcription factor and other cell signaling pathways. This review presents an overview of the anti-cancer potential of fisetin in different types of cancer through the modulation of cell signaling pathways based on in vivo and in vitro studies. A synergistic effect with anticancer drugs and strategies to improve the bioavailability are described. More clinical trials need to be performed to explore the anti-cancer potential and mechanism-of-action of fisetin and its optimum therapeutic dose.
Assuntos
Flavonoides , Neoplasias , Humanos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Antioxidantes/farmacologia , Flavonóis/farmacologia , Flavonóis/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , ApoptoseRESUMO
Cancer is the leading cause of death worldwide. In spite of advances in the treatment of cancer, currently used treatment modules including chemotherapy, hormone therapy, radiation therapy and targeted therapy causes adverse effects and kills the normal cells. Therefore, the goal of more effective and less side effects-based cancer treatment approaches is still at the primary position of present research. Medicinal plants or their bioactive ingredients act as dynamic sources of drugs due to their having less side effects and also shows the role in reduction of resistance against cancer therapy. Apigenin is an edible plant-derived flavonoid that has received significant scientific consideration for its health-promoting potential through modulation of inflammation, oxidative stress and various other biological activities. Moreover, the anti-cancer potential of apigenin is confirmed through its ability to modulate various cell signalling pathways, including tumor suppressor genes, angiogenesis, apoptosis, cell cycle, inflammation, apoptosis, PI3K/AKT, NF-κB, MAPK/ERK and STAT3 pathways. The current review mainly emphases the potential role of apigenin in different types of cancer through the modulation of various cell signaling pathways. Further studies based on clinical trials are needed to explore the role of apigenin in cancer management and explain the possible potential mechanisms of action in this vista.
Assuntos
Apigenina , Neoplasias , Apigenina/farmacologia , Apigenina/uso terapêutico , Apoptose , Hormônios/farmacologia , Humanos , Inflamação/tratamento farmacológico , NF-kappa B/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismoRESUMO
Honey is the principal premier product of beekeeping familiar to Homo for centuries. In every geological era and culture, evidence can be traced to the potential usefulness of honey in several ailments. With the advent of recent scientific approaches, honey has been proclaimed as a potent complementary and alternative medicine for the management and treatment of several maladies including various neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis, etc. In the literature archive, oxidative stress and the deprivation of antioxidants are believed to be the paramount cause of many of these neuropathies. Since different types of honey are abundant with certain antioxidants, primarily in the form of diverse polyphenols, honey is undoubtedly a strong pharmaceutic candidate against multiple neurological diseases. In this review, we have indexed and comprehended the involved mechanisms of various constituent polyphenols including different phenolic acids, flavonoids, and other phytochemicals that manifest multiple antioxidant effects in various neurological disorders. All these mechanistic interpretations of the nutritious components of honey explain and justify the potential recommendation of sweet nectar in ameliorating the burden of neurological disorders that have significantly increased across the world in the last few decades.
Assuntos
Doença de Alzheimer , Mel , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Flavonoides , Mel/análise , Humanos , Polifenóis/farmacologia , Polifenóis/uso terapêuticoRESUMO
Garlic's main bioactive organosulfur component, diallyl trisulfide (DATS), has been widely investigated in cancer models. However, DATS is not suitable for clinical use due to its low solubility. The current study seeks to improve DATS bioavailability and assess its chemopreventive and chemosensitizing properties in an AOM-induced colorectal cancer model. The polyethylene glycol coated Distearoylphosphatidylcholine/Cholesterol (DSPC/Chol) comprising DATS-loaded DATSL and doxorubicin (DOXO)-encapsulated DOXL liposomes was prepared and characterized. The changes in the sensitivity of DATS and DOXO by DATSL and DOXL were evaluated in RKO and HT-29 colon cancer cells. The synergistic effect of DATSL and DOXL was studied by cell proliferation assay in the combinations of IC10, IC25, and IC35 of DATSL with the IC10 of DOXL. AOM, DATSL, and DOXL were administered to different groups of mice for a period of 21 weeks. The data exhibited ~93% and ~46% entrapment efficiency of DATSL and DOXL, respectively. The size of sham liposomes was 110.5 nm, whereas DATSL and DOXL were 135.5 nm and 169 nm, respectively. DATSL and DOXL exhibited significant sensitivity in the cell proliferation experiment, lowering their IC50 doses by more than 8- and 14-fold, respectively. However, the DATSL IC10, IC25, and IC35 showed escalating chemosensitivity, and treated the cells in combination with DOXL IC10. Analysis of histopathological, cancer marker enzymes, and antioxidant enzymes revealed that the high dose of DATSL pretreatment and DOXL chemotherapy is highly effective in inhibiting AOM-induced colon cancer promotion. The combination of DATSL and DOXL indicated promise as a colorectal cancer treatment in this study. Intermolecular interactions of DATS and DOXO against numerous cancer targets by molecular docking indicated MMP-9 as the most favourable target for DATS exhibiting binding energy of -4.6 kcal/mol. So far, this is the first research to demonstrate the chemopreventive as well as chemosensitizing potential of DATSL in an animal model of colorectal cancer.
Assuntos
Compostos Alílicos , Neoplasias do Colo , Nanopartículas , Compostos Alílicos/farmacologia , Animais , Apoptose , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Doxorrubicina/farmacologia , Lipídeos/farmacologia , Lipossomos/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Sulfetos/farmacologiaRESUMO
Novel strain of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) causes mild to severe respiratory illness. The early symptoms may be fever, dry cough, sour throat, and difficulty in breathing which may lead to death in severe cases. Compared to previous outbreaks like SARS-CoV and Middle East Respiratory Syndrome (MERS), SARS-CoV2 disease (COVID-19) outbreak has been much distressing due to its high rate of infection but low infection fatality rate (IFR) with 1.4% around the world. World Health Organization (WHO) has declared (COVID-19) a pandemic on March 11, 2020. In the month of January 2020, the whole genome of SARS-CoV2 was sequenced which made work easy for researchers to develop diagnostic kits and to carry out drug repurposing to effectively alleviate the pandemic situation in the world. Now, it is important to understand why this virus has high rate of infectivity or is there any factor involved at the genome level which actually facilitates this virus infection globally? In this study, we have extensively analyzed the whole genomes of different coronaviruses infecting humans and animals in different geographical locations around the world. The main aim of the study is to identify the similarity and the mutational adaptation of the coronaviruses from different host and geographical locations to the SARS-CoV2 and provide a better strategy to understand the mutational rate for specific target-based drug designing. This study is focused to every annotation in a comparative manner which includes SNPs, repeat analysis with the different categorization of the short-sequence repeats and long-sequence repeats, different UTR's, transcriptional factors, and the predicted matured peptides with the specific length and positions on the genomes. The extensive analysis on SNPs revealed that Wuhan SARS-CoV2 and Indian SARS-CoV2 are having only eight SNPs. Collectively, phylogenetic analysis, repeat analysis, and the polymorphism revealed the genomic conserveness within the SARS-CoV2 and few other coronaviruses with very less mutational chances and the huge distance and mutations from the few other species.
Assuntos
COVID-19/genética , Genoma Viral , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Anotação de Sequência Molecular , Filogenia , RNA Viral/genética , SARS-CoV-2/genética , COVID-19/diagnóstico , Estudo de Associação Genômica Ampla , HumanosRESUMO
In the past decades, the branch of complementary and alternative medicine based therapeutics has gained considerable attention worldwide. Pharmacological efficacy of various traditional medicinal plants, their products and/or product derivatives have been explored on an increasing scale. Tanshinone IIA (Tan IIA) is a pharmacologically active lipophilic component of Salvia miltiorrhiza extract. Tan IIA shares a history of high repute in Traditional Chinese Medicine. Reckoning with these, the present review collates the pharmacological properties of Tan IIA with a special emphasis on its therapeutic potential against diverse diseases including cardiovascular diseases, cerebrovascular diseases, cancer, diabetes, obesity and neurogenerative diseases. Further, possible applications of various therapeutic preparations of Tan IIA were discussed with special emphasis on nano-based drug delivery formulations. Considering the tremendous advancement in the field of nanomedicine and the therapeutic potential of Tan IIA, the convergence of these two aspects can be foreseen with great promise in clinical application.
Assuntos
Abietanos/administração & dosagem , Anti-Inflamatórios não Esteroides/administração & dosagem , Antioxidantes/administração & dosagem , Animais , Sistemas de Liberação de Medicamentos , Quimioterapia Combinada , HumanosRESUMO
Advanced glycation end products (AGEs) are naturally occurring biomolecules formed by interaction of reducing sugars with biomolecules such as protein and lipids etc., Long term high blood sugar level and glycation accelerate the formation of AGEs. Unchecked continuous formation and accumulation of AGEs are potential risks for pathogenesis of various chronic diseases. Current mode of antidiabetic therapy is based on synthetic drugs that are often linked with severe adverse effects. Polyphenolic compounds derived from plants are supposed to inhibit glycation and formation of AGEs at multiple levels. Some polyphenolic compounds regulate the blood glucose metabolism by amplification of cell insulin resistance and activation of insulin like growth factor binding protein signaling pathway. Their antioxidant nature and metal chelating activity, ability to trap intermediate dicarbonyl compounds could be possible mechanisms against glycation and AGEs formation and hence, against AGEs induced health complications. Although, few species of polyphenolic compounds are being used in in vitro trials and their in vivo study is still in progress, increasing the area of research in this field may produce a fruitful approach in management of overall diabetic complications.