Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 13(7): e1006515, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28753640

RESUMO

We have previously shown that the Mycobacterium tuberculosis universal stress protein Rv2623 regulates mycobacterial growth and may be required for the establishment of tuberculous persistence. Here, yeast two-hybrid and affinity chromatography experiments have demonstrated that Rv2623 interacts with one of the two forkhead-associated domains (FHA I) of Rv1747, a putative ATP-binding cassette transporter annotated to export lipooligosaccharides. FHA domains are signaling protein modules that mediate protein-protein interactions to modulate a wide variety of biological processes via binding to conserved phosphorylated threonine (pT)-containing oligopeptides of the interactors. Biochemical, immunochemical and mass spectrometric studies have shown that Rv2623 harbors pT and specifically identified threonine 237 as a phosphorylated residue. Relative to wild-type Rv2623 (Rv2623WT), a mutant protein in which T237 has been replaced with a non-phosphorylatable alanine (Rv2623T237A) exhibits decreased interaction with the Rv1747 FHA I domain and diminished growth-regulatory capacity. Interestingly, compared to WT bacilli, an M. tuberculosis Rv2623 null mutant (ΔRv2623) displays enhanced expression of phosphatidyl-myo-inositol mannosides (PIMs), while the ΔRv1747 mutant expresses decreased levels of PIMs. Animal studies have previously shown that ΔRv2623 is hypervirulent, while ΔRv1747 is growth-attenuated. Collectively, these data have provided evidence that Rv2623 interacts with Rv1747 to regulate mycobacterial growth; and this interaction is mediated via the recognition of the conserved Rv2623 pT237-containing FHA-binding motif by the Rv1747 FHA I domain. The divergent aberrant PIM profiles and the opposing in vivo growth phenotypes of ΔRv2623 and ΔRv1747, together with the annotated lipooligosaccharide exporter function of Rv1747, suggest that Rv2623 interacts with Rv1747 to modulate mycobacterial growth by negatively regulating the activity of Rv1747; and that Rv1747 might function as a transporter of PIMs. Because these glycolipids are major mycobacterial cell envelope components that can impact on the immune response, our findings raise the possibility that Rv2623 may regulate bacterial growth, virulence, and entry into persistence, at least in part, by modulating the levels of bacillary PIM expression, perhaps through negatively regulating the Rv1747-dependent export of the immunomodulatory PIMs to alter host-pathogen interaction, thereby influencing the fate of M. tuberculosis in vivo.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Humanos , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Proteínas de Ligação a Fosfato , Fosforilação , Ligação Proteica , Domínios Proteicos , Técnicas do Sistema de Duplo-Híbrido
2.
RNA ; 20(4): 447-61, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24570482

RESUMO

RNA aptamers are being developed as inhibitors of macromolecular and cellular function, diagnostic tools, and potential therapeutics. Our understanding of the physical nature of this emerging class of nucleic acid-protein complexes is limited; few atomic resolution structures have been reported for aptamers bound to their protein target. Guided by chemical mapping, we systematically minimized an RNA aptamer (Lys1) selected against hen egg white lysozyme. The resultant 59-nucleotide compact aptamer (Lys1.2minE) retains nanomolar binding affinity and the ability to inhibit lysozyme's catalytic activity. Our 2.0-Å crystal structure of the aptamer-protein complex reveals a helical stem stabilizing two loops to form a protein binding platform that binds lysozyme distal to the catalytic cleft. This structure along with complementary solution analyses illuminate a novel protein-nucleic acid interface; (1) only 410 Å(2) of solvent accessible surface are buried by aptamer binding; (2) an unusually small fraction (∼18%) of the RNA-protein interaction is electrostatic, consistent with the limited protein phosphate backbone contacts observed in the structure; (3) a single Na(+) stabilizes the loops that constitute the protein-binding platform, and consistent with this observation, Lys1.2minE-lysozyme complex formation takes up rather than displaces cations at low ionic strength; (4) Lys1.2minE inhibits catalysis of large cell wall substrates but not catalysis of small model substrates; and (5) the helical stem of Lys1.2minE can be shortened to four base pairs (Lys1.2minF) without compromising binding affinity, yielding a 45-nucleotide aptamer whose structure may be an adaptable protein binding platform.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Muramidase/antagonistas & inibidores , Muramidase/metabolismo , Sódio/metabolismo , Animais , Aptâmeros de Nucleotídeos/química , Pareamento de Bases , Sequência de Bases , Catálise , Galinhas , Espectroscopia de Ressonância Magnética , Micrococcus/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Muramidase/genética , Conformação de Ácido Nucleico , Concentração Osmolar , Ligação Proteica , Conformação Proteica , Sódio/química , Eletricidade Estática , Especificidade por Substrato , Ultracentrifugação , Difração de Raios X
3.
J Biol Chem ; 289(37): 25750-63, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25074926

RESUMO

TYRO3, AXL, and MER receptors (TAMs) are three homologous type I receptor-tyrosine kinases that are activated by endogenous ligands, protein S (PROS1) and growth arrest-specific gene 6 (GAS6). These ligands can either activate TAMs as soluble factors, or, in turn, opsonize phosphatidylserine (PS) on apoptotic cells (ACs) and serve as bridging molecules between ACs and TAMs. Abnormal expression and activation of TAMs have been implicated in promoting proliferation and survival of cancer cells, as well as in suppressing anti-tumor immunity. Despite the fact that TAM receptors share significant similarity, little is known about the specificity of interaction between TAM receptors and their ligands, particularly in the context of ACs, and about the functional diversity of TAM receptors. To study ligand-mediated activation of TAMs, we generated a series of reporter cell lines expressing chimeric TAM receptors. Using this system, we found that each TAM receptor has a unique pattern of interaction with and activation by GAS6 and PROS1, which is also differentially affected by the presence of ACs, PS-containing lipid vesicles and enveloped virus. We also demonstrated that γ-carboxylation of ligands is essential for the full activation of TAMs and that soluble immunoglobulin-like TAM domains act as specific ligand antagonists. These studies demonstrate that, despite their similarity, TYRO3, AXL, and MER are likely to perform distinct functions in both immunoregulation and the recognition and removal of ACs.


Assuntos
Apoptose/genética , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Proteínas Sanguíneas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células Jurkat , Proteína S , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Estomatite Vesicular/genética , c-Mer Tirosina Quinase , Receptor Tirosina Quinase Axl
4.
J Biol Chem ; 289(37): 25737-49, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25074939

RESUMO

MERTK, a member of the TAM (TYRO3, AXL, and MERTK) receptor tyrosine kinases, has complex and diverse roles in cell biology. On the one hand, knock-out of MERTK results in age-dependent autoimmunity characterized by failure of apoptotic cell clearance, while on the other, MERTK overexpression in cancer drives classical oncogene pathways leading to cell transformation. To better understand the interplay between cell transformation and efferocytosis, we stably expressed MERTK in human MCF10A cells, a non-tumorigenic breast epithelial cell line devoid of endogenous MERTK. While stable expression of MERTK in MCF10A resulted in enhanced motility and AKT-mediated chemoprotection, MERTK-10A cells did not form stable colonies in soft agar, or enhance proliferation compared with parental MCF10A cells. Concomitant to chemoresistance, MERTK also stimulated efferocytosis in a gain-of-function capacity. However, unlike AXL, MERTK activation was highly dependent on apoptotic cells, suggesting MERTK may preferentially interface with phosphatidylserine. Consistent with this idea, knockdown of MERTK in breast cancer cells MDA-MB 231 reduced efferocytosis, while transient or stable expression of MERTK stimulated apoptotic cell clearance in all cell lines tested. Moreover, human breast cancer cells with higher endogenous MERTK showed higher levels of efferocytosis that could be blocked by soluble TAM receptors. Finally, through MERTK, apoptotic cells induced PD-L1 expression, an immune checkpoint blockade, suggesting that cancer cells may adopt MERTK-driven efferocytosis as an immune suppression mechanism for their advantage. These data collectively identify MERTK as a significant link between cancer progression and efferocytosis, and a potentially unrealized tumor-promoting event when MERTK is overexpressed in epithelial cells.


Assuntos
Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Células Epiteliais/metabolismo , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Apoptose/genética , Neoplasias da Mama/patologia , Movimento Celular/genética , Células Epiteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Fagocitose/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , c-Mer Tirosina Quinase , Receptor Tirosina Quinase Axl
5.
PLoS Pathog ; 5(5): e1000460, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19478878

RESUMO

Tuberculous latency and reactivation play a significant role in the pathogenesis of tuberculosis, yet the mechanisms that regulate these processes remain unclear. The Mycobacterium tuberculosisuniversal stress protein (USP) homolog, rv2623, is among the most highly induced genes when the tubercle bacillus is subjected to hypoxia and nitrosative stress, conditions thought to promote latency. Induction of rv2623 also occurs when M. tuberculosis encounters conditions associated with growth arrest, such as the intracellular milieu of macrophages and in the lungs of mice with chronic tuberculosis. Therefore, we tested the hypothesis that Rv2623 regulates tuberculosis latency. We observed that an Rv2623-deficient mutant fails to establish chronic tuberculous infection in guinea pigs and mice, exhibiting a hypervirulence phenotype associated with increased bacterial burden and mortality. Consistent with this in vivo growth-regulatory role, constitutive overexpression of rv2623 attenuates mycobacterial growth in vitro. Biochemical analysis of purified Rv2623 suggested that this mycobacterial USP binds ATP, and the 2.9-A-resolution crystal structure revealed that Rv2623 engages ATP in a novel nucleotide-binding pocket. Structure-guided mutagenesis yielded Rv2623 mutants with reduced ATP-binding capacity. Analysis of mycobacteria overexpressing these mutants revealed that the in vitro growth-inhibitory property of Rv2623 correlates with its ability to bind ATP. Together, the results indicate that i) M. tuberculosis Rv2623 regulates mycobacterial growth in vitro and in vivo, and ii) Rv2623 is required for the entry of the tubercle bacillus into the chronic phase of infection in the host; in addition, iii) Rv2623 binds ATP; and iv) the growth-regulatory attribute of this USP is dependent on its ATP-binding activity. We propose that Rv2623 may function as an ATP-dependent signaling intermediate in a pathway that promotes persistent infection.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/fisiologia , Proteínas de Transporte/fisiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose/etiologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Doença Crônica , Cristalografia por Raios X , Regulação Bacteriana da Expressão Gênica , Cobaias , Camundongos , Proteínas de Ligação a Fosfato , Ligação Proteica , Tuberculose/patologia
6.
J Mol Biol ; 342(5): 1559-67, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15364581

RESUMO

Cofilin/ADF affects strongly the structure of actin filaments and especially the intermolecular contacts of the DNase I binding loop (D-loop) in subdomain 2. In G-actin, the D-loop is cleaved by subtilisin between Met47 and Gly48, while in F-actin this cleavage is inhibited. Here, we report that yeast cofilin, which is resistant to both subtilisin and trypsin, accelerates greatly the rate of subtilisin cleavage of this loop in F-actin at pH 6.8 and at pH 8.0. Similarly, cofilin accelerates strongly the tryptic cleavage in F-actin of loop 60-69 in subdomain 2, at Arg62 and Lys68. The acceleration of the loops' proteolysis cannot be attributed to an increased treadmilling of F-actin for the following reasons: (i) the rate of subtilisin cleavage is independent of pH between pH 6.8 and 8.0, unlike F-actin depolymerization, which is pH-dependent; (ii) at high concentrations of protease the cleavage rate of F-actin in the presence of cofilin is faster than the rate of monomer dissociation from the pointed end of TRC-labeled F-actin, which limits the rate of treadmilling; and (iii) cofilin also accelerates the rate of subtilisin cleavage of F-actin in which the treadmilling is blocked by interprotomer cross-linking of the D-loop to the C terminus on an adjacent protomer. This suggests a substantial flexibility of the D-loop in the cross-linked F-actin. The increased cleavage rates of the D-loop and loop 60-69 reveal extensive exposure of subdomain 2 in F-actin to proteolytic enzymes by cofilin.


Assuntos
Actinas/química , Actinas/metabolismo , Proteínas dos Microfilamentos/farmacologia , Conformação Proteica/efeitos dos fármacos , Fatores de Despolimerização de Actina , Reagentes de Ligações Cruzadas , Peptídeo Hidrolases/metabolismo , Estrutura Terciária de Proteína , Subtilisina/metabolismo , Tripsina/metabolismo
7.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 61(Pt 11): 959-63, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16511207

RESUMO

The three-dimensional crystallographic structure of the ybeY protein from Escherichia coli (SwissProt entry P77385) is reported at 2.7 A resolution. YbeY is a hypothetical protein that belongs to the UPF0054 family. The structure reveals that the protein binds a metal ion in a tetrahedral geometry. Three coordination sites are provided by histidine residues, while the fourth might be a water molecule that is not seen in the diffraction map because of its relatively low resolution. X-ray fluorescence analysis of the purified protein suggests that the metal is a nickel ion. The structure of ybeY and its sequence similarity to a number of predicted metal-dependent hydrolases provides a functional assignment for this protein family. The figures and tables of this paper were prepared using semi-automated tools, termed the Autopublish server, developed by the New York Structural GenomiX Research Consortium, with the goal of facilitating the rapid publication of crystallographic structures that emanate from worldwide Structural Genomics efforts, including the NIH-funded Protein Structure Initiative.


Assuntos
Proteínas de Escherichia coli/química , Metaloproteínas/química , Sequência de Aminoácidos , Clonagem Molecular , Biologia Computacional , Cristalografia por Raios X , Proteínas de Escherichia coli/fisiologia , Histidina/química , Metaloproteínas/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência/métodos , Difração de Raios X
8.
Chem Biol ; 19(6): 721-30, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22726686

RESUMO

Plasmodium falciparum, the primary cause of deaths from malaria, is a purine auxotroph and relies on hypoxanthine salvage from the host purine pool. Purine starvation as an antimalarial target has been validated by inhibition of purine nucleoside phosphorylase. Hypoxanthine depletion kills Plasmodium falciparum in cell culture and in Aotus monkey infections. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from P. falciparum is required for hypoxanthine salvage by forming inosine 5'-monophosphate, a branchpoint for all purine nucleotide synthesis in the parasite. Here, we present a class of HGXPRT inhibitors, the acyclic immucillin phosphonates (AIPs), and cell permeable AIP prodrugs. The AIPs are simple, potent, selective, and biologically stable inhibitors. The AIP prodrugs block proliferation of cultured parasites by inhibiting the incorporation of hypoxanthine into the parasite nucleotide pool and validates HGXPRT as a target in malaria.


Assuntos
Inibidores Enzimáticos/farmacologia , Organofosfonatos/farmacologia , Pentosiltransferases/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Pró-Fármacos/farmacologia , Domínio Catalítico/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Eritrócitos/efeitos dos fármacos , Humanos , Modelos Moleculares , Conformação Molecular , Organofosfonatos/síntese química , Organofosfonatos/química , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Plasmodium falciparum/enzimologia , Plasmodium falciparum/metabolismo , Pró-Fármacos/síntese química , Pró-Fármacos/química , Relação Estrutura-Atividade
9.
Biochem Biophys Res Commun ; 307(4): 928-34, 2003 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-12878200

RESUMO

Modern proteomics approaches include techniques to examine the expression, localization, modifications, and complex formation of proteins in cells. In order to address issues of protein function in vitro using classical biochemical and biophysical approaches, high-throughput methods of cloning the appropriate reading frames, and expressing and purifying proteins efficiently are an important goal of modern proteomics approaches. This process becomes more difficult as functional proteomics efforts focus on the proteins from higher organisms, since issues of correctly identifying intron-exon boundaries and efficiently expressing and solubilizing the (often) multi-domain proteins from higher eukaryotes are challenging. Recently, 12,000 open-reading-frame (ORF) sequences from Caenorhabditis elegans have become available for functional proteomics studies [Nat. Gen. 34 (2003) 35]. We have implemented a high-throughput screening procedure to express, purify, and analyze by mass spectrometry hexa-histidine-tagged C. elegans ORFs in Escherichia coli using metal affinity ZipTips. We find that over 65% of the expressed proteins are of the correct mass as analyzed by matrix-assisted laser desorption MS. Many of the remaining proteins indicated to be "incorrect" can be explained by high-throughput cloning or genome database annotation errors. This provides a general understanding of the expected error rates in such high-throughput cloning projects. The ZipTip purified proteins can be further analyzed under both native and denaturing conditions for functional proteomics efforts.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteômica/métodos , Animais , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Expressão Gênica , Peptídeos/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
J Biol Chem ; 279(18): 18103-6, 2004 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-14982926

RESUMO

Purine nucleoside phosphorylase from Plasmodium falciparum (PfPNP) is an anti-malarial target based on the activity of Immucillins. The crystal structure of PfPNP.Immucillin-H (ImmH).SO(4) reveals a homohexamer with ImmH and SO(4) bound at each catalytic site. A solvent-filled cavity close to the 5'-hydroxyl group of ImmH suggested that PfPNP can accept additional functional groups at the 5'-carbon. Assays established 5'-methylthioinosine (MTI) as a substrate for PfPNP. MTI is not found in human metabolism. These properties of PfPNP suggest unusual purine pathways in P. falciparum and provide structural and mechanistic foundations for the design of malaria-specific transition state analogue inhibitors. 5'-Methylthio-Immucillin-H (MT-ImmH) was designed to resemble the transition state of PfPNP and binds to PfPNP and human-PNP with K(d) values of 2.7 and 303 nm, respectively, to give a discrimination factor of 112. MT-ImmH is the first inhibitor that favors PfPNP inhibition. The structure of PfPNP.MT-ImmH.SO(4) shows that the hydrophobic methylthio group inserts into a hydrophobic region adjacent to the more hydrophilic 5'-hydroxyl binding site of ImmH. The catalytic features of PfPNP indicate a dual cellular function in purine salvage and polyamine metabolism. Combined metabolic functions in a single enzyme strengthen the rationale for targeting PfPNP in anti-malarial action.


Assuntos
Metiltioinosina/análogos & derivados , Plasmodium falciparum/enzimologia , Purina-Núcleosídeo Fosforilase/química , Purina-Núcleosídeo Fosforilase/metabolismo , Animais , Catálise , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metiltioinosina/metabolismo , Estrutura Molecular , Nucleosídeos de Purina , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Pirimidinonas/química , Pirróis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA