Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Pediatr Res ; 95(1): 112-119, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37573381

RESUMO

BACKGROUND: Neuroprotection combined with neuroregeneration may be critical for optimizing functional recovery in neonatal encephalopathy. To investigate the neurogenic response to hypoxia-ischemia (HI) followed by normothermia (38.5 °C) or three different hypothermic temperatures (35, 33.5, or 30 °C) in the subventricular zone (SVZ) of the neonatal piglet. METHODS: Following transient cerebral HI and resuscitation, 28 newborn piglets were randomized to: normothermia or whole-body cooling to 35 °C, 33.5 °C, or 30 °C during 2-26 h (all n = 7). At 48 h, piglets were euthanized and SVZ obtained to evaluate its cellularity, pattern of cell death, radial glia length, doublecortin (DCX, neuroblasts) expression, and Ki67 (cell proliferation) and Ki67/Sox2 (neural stem/progenitor dividing) cell counts. RESULTS: Normothermic piglets showed lower total (Ki67+) and neural stem/progenitor dividing (Ki67+Sox2+) cell counts when compared to hypothermic groups. Cooling to 33.5 °C obtained the highest values of SVZ cellularity, radial glia length processes, neuroblast chains area and DCX immunohistochemistry. Cooling to 30 °C, however, revealed decreased cellularity in the lateral SVZ and shorter radial glia processes when compared with 33.5 °C. CONCLUSIONS: In a neonatal piglet model, hypothermia to 33.5 °C modulates the neurogenic response of the SVZ after HI, highlighting the potential beneficial effect of hypothermia to 33.5 °C on endogenous neurogenesis and the detrimental effect of overcooling beyond this threshold. IMPACT: Neuroprotection combined with neuroregeneration may be critical for optimizing functional recovery in neonatal encephalopathy. Hypothermia may modulate neurogenesis in the subventricular zone (SVZ) of the neonatal hypoxic-ischemic piglet. Cooling to 33.5 °C obtained the highest values of SVZ cellularity, radial glia length processes, neuroblast chains area and doublecortin immunohistochemistry; cooling to 30 °C, however, revealed decreased cellularity and shorter radial glia processes. In a neonatal piglet model, therapeutic hypothermia (33.5 °C) modulates the neurogenic response of the SVZ after hypoxia-ischemia, highlighting also the detrimental effect of overcooling beyond this threshold.


Assuntos
Hipotermia Induzida , Hipotermia , Hipóxia-Isquemia Encefálica , Animais , Suínos , Ventrículos Laterais , Animais Recém-Nascidos , Hipotermia/terapia , Antígeno Ki-67 , Neurogênese , Hipóxia-Isquemia Encefálica/terapia , Isquemia , Proteínas do Domínio Duplacortina
2.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338884

RESUMO

The need for new and effective treatments for neonates suffering from hypoxia-ischemia is urgent, as the only implemented therapy in clinics is therapeutic hypothermia, only effective in 50% of cases. Cannabinoids may modulate neuronal development and brain plasticity, but further investigation is needed to better describe their implication as a neurorestorative therapy after neonatal HI. The cannabinoid URB447, a CB1 antagonist/CB2 agonist, has previously been shown to reduce brain injury after HI, but it is not clear whether sex may affect its neuroprotective and/or neurorestorative effect. Here, URB447 strongly reduced brain infarct, improved neuropathological score, and augmented proliferative capacity and neurogenic response in the damaged hemisphere. When analyzing these effects by sex, URB447 ameliorated brain damage in both males and females, and enhanced cell proliferation and the number of neuroblasts only in females, thus suggesting a neuroprotective effect in males and a double neuroprotective/neurorestorative effect in females.


Assuntos
Compostos de Benzil , Lesões Encefálicas , Canabinoides , Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Pirróis , Animais , Ratos , Masculino , Feminino , Animais Recém-Nascidos , Hipóxia-Isquemia Encefálica/patologia , Ratos Wistar , Isquemia/patologia , Neurogênese , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Canabinoides/farmacologia , Lesões Encefálicas/patologia , Encéfalo/patologia
3.
Int J Mol Sci ; 21(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32074976

RESUMO

In the process of neonatal encephalopathy, oxidative stress and neuroinflammation have a prominent role after perinatal asphyxia. With the exception of therapeutic hypothermia, no therapeutic interventions are available in the clinical setting to target either the oxidative stress or inflammation, despite the high prevalence of neurological sequelae of this devastating condition. The endocannabinoid system (ECS), recently recognized as a widespread neuromodulatory system, plays an important role in the development of the central nervous system (CNS). This study aims to evaluate the potential effect of the cannabinoid (CB) agonist WIN 55,212-2 (WIN) on reactive oxygen species (ROS) and early inflammatory cytokine production after hypoxia-ischemia (HI) in fetal lambs. Hypoxic-ischemic animals were subjected to 60 min of HI by partial occlusion of the umbilical cord. A group of lambs received a single dose of 0.01 µg/kg WIN, whereas non-asphyctic animals served as controls. WIN reduced the widespread and notorious increase in inflammatory markers tumor necrosis factor (TNF)-α and interleukin (IL)-1ß and IL-6 induced by HI, a modulatory effect not observed for oxidative stress. Our study suggests that treatment with a low dose of WIN can alter the profile of pro-inflammatory cytokines 3 h after HI.


Assuntos
Canabinoides/farmacologia , Citocinas/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Benzoxazinas/farmacologia , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Modelos Animais de Doenças , Feminino , Feto/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Morfolinas/farmacologia , Naftalenos/farmacologia , Gravidez , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Receptores de Canabinoides/química , Receptores de Canabinoides/metabolismo , Ovinos , Fator de Necrose Tumoral alfa/metabolismo
4.
Neurobiol Dis ; 121: 240-251, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300675

RESUMO

Therapeutic hypothermia is only partially protective for neonatal encephalopathy; there is an urgent need to develop treatments that augment cooling. Our objective was to assess safety, efficacy and pharmacokinetics of 5 and 15 mg/kg/24 h melatonin (proprietary formulation) administered at 2 h and 26 h after hypoxia-ischemia (HI) with cooling in a piglet model. Following moderate cerebral HI, 30 piglets were eligible and randomized to: i) Hypothermia (33.5 °C, 2-26 h) and vehicle (HT + V;n = 13); b) HT and 5 mg/kg melatonin over 6 h at 2 h and 26 h after HI (HT + Mel-5;n = 4); c) HT and 15 mg/kg melatonin over 6 h at 2 h and 26 h after HI (HT + Mel-15;n = 13). Intensive care was maintained for 48 h; brain MRS was acquired and cell death (TUNEL) evaluated at 48 h. Comparing HT + V with HT + Mel-5 and HT + Mel-15, there was no difference in blood pressure or inotropic support needed, brain Lactate/N Acetylaspartate at 24 h and 48 h was similar, ATP/phosphate pool was higher for HT + Mel-15 versus HT + V at 24 h (p = 0.038) but not 48 h. A localized reduction in TUNEL positive cell death was observed in the sensorimotor cortex in the 15 mg/kg melatonin group (HT + Mel-15 versus HT + V; p < 0.003) but not in the 5 mg/kg melatonin group (HT + Mel-5 versus HT + V; p = 0.808). Putative therapeutic melatonin levels were reached 8 h after HI (104 increase from baseline; ~15-30 mg/l). Mean ±â€¯SD peak plasma melatonin levels after the first infusion were 0.0014 ±â€¯0.0012 mg/l in the HT + V group, 3.97 ±â€¯1.53 mg/l in the HT + Mel-5 group and 16.8 ±â€¯8.3 mg/l in the HT + Mel-15 group. Protection was dose dependent; 15 mg/kg melatonin started 2 h after HI, given over 6 h, was well tolerated and augmented hypothermic protection in sensorimotor cortex. Earlier attainment of therapeutic plasma melatonin levels may optimize protection by targeting initial events of reperfusion injury. The time window for intervention with melatonin, as adjunct therapy with cooling, is likely to be narrow and should be considered in designing future clinical studies.


Assuntos
Encéfalo/efeitos dos fármacos , Hipotermia Induzida/métodos , Hipóxia-Isquemia Encefálica/terapia , Melatonina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/metabolismo , Melatonina/farmacologia , Fármacos Neuroprotetores/farmacologia , Sus scrofa , Pesquisa Translacional Biomédica
5.
Dev Neurosci ; 39(1-4): 156-170, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28391258

RESUMO

The selective α2-adrenoreceptor agonist dexmedetomidine has shown neuroprotective, analgesic, anti-inflammatory, and sympatholytic properties that may be beneficial in neonatal encephalopathy (NE). As therapeutic hypothermia is only partially effective, adjunct therapies are needed to optimize outcomes. The aim was to assess whether hypothermia + dexmedetomidine treatment augments neuroprotection compared to routine treatment (hypothermia + fentanyl sedation) in a piglet model of NE using magnetic resonance spectroscopy (MRS) biomarkers, which predict outcomes in babies with NE, and immunohistochemistry. After hypoxia-ischaemia (HI), 20 large White male piglets were randomized to: (i) hypothermia + fentanyl with cooling to 33.5°C from 2 to 26 h, or (ii) hypothermia + dexmedetomidine (a loading dose of 2 µg/kg at 10 min followed by 0.028 µg/kg/h for 48 h). Whole-brain phosphorus-31 and regional proton MRS biomarkers were assessed at baseline, 24, and 48 h after HI. At 48 h, cell death was evaluated over 7 brain regions by means of transferase-mediated d-UTP nick end labeling (TUNEL). Dexmedetomidine plasma levels were mainly within the target sedative range of 1 µg/L. In the hypothermia + dexmedetomidine group, there were 6 cardiac arrests (3 fatal) versus 2 (non-fatal) in the hypothermia + fentanyl group. The hypothermia + dexmedetomidine group required more saline (p = 0.005) to maintain blood pressure. Thalamic and white-matter lactate/N-acetylaspartate did not differ between groups (p = 0.66 and p = 0.21, respectively); the whole-brain nucleotide triphosphate/exchangeable phosphate pool was similar (p = 0.73) over 48 h. Cell death (TUNEL-positive cells/mm2) was higher in the hypothermia + dexmedetomidine group than in the hypothermia + fentanyl group (mean 5.1 vs. 2.3, difference 2.8 [95% CI 0.6-4.9], p = 0.036). Hypothermia + dexmedetomidine treatment was associated with adverse cardiovascular events, even within the recommended clinical sedative plasma level; these may have been exacerbated by an interaction with either isoflurane or low body temperature. Hypothermia + dexmedetomidine treatment was neurotoxic following HI in our piglet NE model, suggesting that caution is vital if dexmedetomidine is combined with cooling following NE.


Assuntos
Asfixia Neonatal , Sistema Cardiovascular/efeitos dos fármacos , Dexmedetomidina/toxicidade , Hipotermia Induzida/métodos , Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores/toxicidade , Animais , Animais Recém-Nascidos , Terapia Combinada/métodos , Masculino , Distribuição Aleatória , Suínos
6.
Neurobiol Dis ; 87: 29-38, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26687546

RESUMO

Cooling to 33.5°C in babies with neonatal encephalopathy significantly reduces death and disability, however additional therapies are needed to maximize brain protection. Following hypoxia-ischemia we assessed whether inhaled 45-50% Argon from 2-26h augmented hypothermia neuroprotection in a neonatal piglet model, using MRS and aEEG, which predict outcome in babies with neonatal encephalopathy, and immunohistochemistry. Following cerebral hypoxia-ischemia, 20 Newborn male Large White piglets<40h were randomized to: (i) Cooling (33°C) from 2-26h (n=10); or (ii) Cooling and inhaled 45-50% Argon (Cooling+Argon) from 2-26h (n=8). Whole-brain phosphorus-31 and regional proton MRS were acquired at baseline, 24 and 48h after hypoxia-ischemia. EEG was monitored. At 48h after hypoxia-ischemia, cell death (TUNEL) was evaluated over 7 brain regions. There were no differences in body weight, duration of hypoxia-ischemia or insult severity; throughout the study there were no differences in heart rate, arterial blood pressure, blood biochemistry and inotrope support. Two piglets in the Cooling+Argon group were excluded. Comparing Cooling+Argon with Cooling there was preservation of whole-brain MRS ATP and PCr/Pi at 48h after hypoxia-ischemia (p<0.001 for both) and lower (1)H MRS lactate/N acetyl aspartate in white (p=0.03 and 0.04) but not gray matter at 24 and 48h. EEG background recovery was faster (p<0.01) with Cooling+Argon. An overall difference between average cell-death of Cooling versus Cooling+Argon was observed (p<0.01); estimated cells per mm(2) were 23.9 points lower (95% C.I. 7.3-40.5) for the Cooling+Argon versus Cooling. Inhaled 45-50% Argon from 2-26h augmented hypothermic protection at 48h after hypoxia-ischemia shown by improved brain energy metabolism on MRS, faster EEG recovery and reduced cell death on TUNEL. Argon may provide a cheap and practical therapy to augment cooling for neonatal encephalopathy.


Assuntos
Argônio/administração & dosagem , Asfixia Neonatal/terapia , Hipotermia Induzida/métodos , Hipóxia-Isquemia Encefálica/terapia , Respiração Artificial/métodos , Animais , Animais Recém-Nascidos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Asfixia Neonatal/patologia , Asfixia Neonatal/fisiopatologia , Análise Química do Sangue , Pressão Sanguínea , Encéfalo/patologia , Encéfalo/fisiopatologia , Morte Celular/fisiologia , Modelos Animais de Doenças , Frequência Cardíaca , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Inalação , Ácido Láctico/metabolismo , Masculino , Neuroproteção , Distribuição Aleatória , Sus scrofa
7.
Stroke ; 46(1): 275-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25424475

RESUMO

BACKGROUND AND PURPOSE: In infants with moderate to severe neonatal encephalopathy, whole-body cooling at 33°C to 34°C for 72 hours is standard care with a number needed to treat to prevent a adverse outcome of 6 to 7. The precise brain temperature providing optimal neuroprotection is unknown. METHODS: After a quantified global cerebral hypoxic-ischemic insult, 28 piglets aged <24 hours were randomized (each group, n=7) to (1) normothermia (38.5°C throughout) or whole-body cooling 2 to 26 hours after insult to (2) 35°C, (3) 33.5°C, or (4) 30°C. At 48 hours after hypoxia-ischemia, delayed cell death (terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling and cleaved caspase 3) and microglial ramification (ionized calcium-binding adapter molecule 1) were evaluated. RESULTS: At 48 hours after hypoxia-ischemia, substantial cerebral injury was found in the normothermia and 30°C hypothermia groups. However, with 35°C and 33.5°C cooling, a clear reduction in delayed cell death and microglial activation was observed in most brain regions (P<0.05), with no differences between 35°C and 33.5°C cooling groups. A protective pattern was observed, with U-shaped temperature dependence in delayed cell death in periventricular white matter, caudate nucleus, putamen, hippocampus, and thalamus. A microglial activation pattern was also seen, with inverted U-shaped temperature dependence in periventricular white matter, caudate nucleus, internal capsule, and hippocampus (all P<0.05). CONCLUSIONS: Cooling to 35°C (an absolute drop of 3.5°C as in therapeutic hypothermia protocols) or to 33.5°C provided protection in most brain regions after a cerebral hypoxic-ischemic insult in the newborn piglet. Although the relatively wide therapeutic range of a 3.5°C to 5°C drop in temperature reassured, overcooling (an 8.5°C drop) was clearly detrimental in some brain regions.


Assuntos
Asfixia/patologia , Encéfalo/patologia , Hipotermia Induzida/métodos , Hipóxia-Isquemia Encefálica/patologia , Animais , Asfixia/terapia , Núcleo Caudado/patologia , Morte Celular , Sobrevivência Celular , Modelos Animais de Doenças , Hipocampo/patologia , Putamen/patologia , Suínos , Tálamo/patologia , Substância Branca/patologia
8.
Mol Neurobiol ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358438

RESUMO

Promoting neural cell proliferation may represent an important strategy for enhancing brain repair after developmental brain injury. The present study aimed to assess the effects of melatonin on cell proliferation after an ischemic injury in the developing hippocampus, focusing on cell cycle dynamics. After in vivo neonatal hypoxia-ischemia (HI), hippocampal cell cycle dynamics were assessed by flow cytometry, together with histological evaluation of dentate gyrus cellularity and proliferation. Melatonin significantly increased the number of proliferating cells in the G2/M phase as well as the proliferating cell nuclear antigen (PCNA) and doublecortin (DCX) labeling reduced by HI. In vivo BrdU labeling revealed a higher BrdU-positivity in the dentate gyrus of ischemic rats treated with melatonin, an effect followed by increased cellularity and preserved hippocampal tissue integrity. These results indicate that the protective effect of melatonin after ischemic injury in neonatal rats may rely on the modulation of cell cycle dynamics of newborn hippocampal cells and increased cell proliferation.

9.
Int J Mol Sci ; 14(5): 9379-95, 2013 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-23629670

RESUMO

One of the most common causes of mortality and morbidity in children is perinatal hypoxia-ischemia (HI). In spite of the advances in neonatology, its incidence is not diminishing, generating a pediatric population that will require an extended amount of chronic care throughout their lifetime. For this reason, new and more effective neuroprotective strategies are urgently required, in order to minimize as much as possible the neurological consequences of this encephalopathy. In this sense, interest has grown in the neuroprotective possibilities of melatonin, as this hormone may help to maintain cell survival through the modulation of a wide range of physiological functions. Although some of the mechanisms by which melatonin is neuroprotective after neonatal asphyxia remain a subject of investigation, this review tries to summarize some of the most recent advances related with its use as a therapeutic drug against perinatal hypoxic-ischemic brain injury, supporting the high interest in this indoleamine as a future feasible strategy for cerebral asphyctic events.


Assuntos
Hipóxia-Isquemia Encefálica/tratamento farmacológico , Melatonina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Animais Recém-Nascidos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Humanos , Hipóxia-Isquemia Encefálica/patologia , Recém-Nascido , Melatonina/farmacologia , Fármacos Neuroprotetores/farmacologia
10.
Pharmaceutics ; 15(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37376115

RESUMO

Neonatal hypoxia-ischemia (HI) often causes hypoxic-ischemic encephalopathy (HIE), a neurological condition that can lead to overall disability in newborns. The only treatment available for affected neonates is therapeutic hypothermia; however, cooling is not always effective to prevent the deleterious effects of HI, so compounds such as cannabinoids are currently under research as new therapies. Modulating the endocannabinoid system (ECS) may reduce brain damage and/or stimulate cell proliferation at the neurogenic niches. Further, the long-term effects of cannabinoid treatment are not so clear. Here, we studied the middle- and long-term effects of 2-AG, the most abundant endocannabinoid in the perinatal period after HI in neonatal rats. At middle-term (postnatal day 14), 2-AG reduced brain injury and increased SGZ's cell proliferation and the number of neuroblasts. At post-natal day 90, the treatment with the endocannabinoid showed global and local protection, suggesting long-lasting neuroprotective effects of 2-AG after neonatal HI in rats.

11.
eNeuro ; 10(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37072177

RESUMO

Therapeutic hypothermia is well established as a standard treatment for infants with hypoxic-ischemic (HI) encephalopathy but it is only partially effective. The potential for combination treatments to augment hypothermic neuroprotection has major relevance. Our aim was to assess the effects of treating newborn rats following HI injury with cannabidiol (CBD) at 0.1 or 1 mg/kg, i.p., in normothermic (37.5°C) and hypothermic (32.0°C) conditions, from 7 d of age (neonatal phase) to 37 d of age (juvenile phase). Placebo or CBD was administered at 0.5, 24, and 48 h after HI injury. Two sensorimotor (rotarod and cylinder rearing) and two cognitive (novel object recognition and T-maze) tests were conducted 30 d after HI. The extent of brain damage was determined by magnetic resonance imaging, histologic evaluation, magnetic resonance spectroscopy, amplitude-integrated electroencephalography, and Western blotting. At 37 d, the HI insult produced impairments in all neurobehavioral scores (cognitive and sensorimotor tests), brain activity (electroencephalography), neuropathological score (temporoparietal cortexes and CA1 layer of hippocampus), lesion volume, magnetic resonance biomarkers of brain injury (metabolic dysfunction, excitotoxicity, neural damage, and mitochondrial impairment), oxidative stress, and inflammation (TNFα). We observed that CBD or hypothermia (to a lesser extent than CBD) alone improved cognitive and motor functions, as well as brain activity. When used together, CBD and hypothermia ameliorated brain excitotoxicity, oxidative stress, and inflammation, reduced brain infarct volume, lessened the extent of histologic damage, and demonstrated additivity in some parameters. Thus, coadministration of CBD and hypothermia could complement each other in their specific mechanisms to provide neuroprotection.


Assuntos
Lesões Encefálicas , Canabidiol , Hipotermia , Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Ratos , Animais Recém-Nascidos , Canabidiol/farmacologia , Hipotermia/tratamento farmacológico , Hipóxia-Isquemia Encefálica/terapia , Inflamação/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
12.
Psychoneuroendocrinology ; 150: 106049, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36758330

RESUMO

IMPORTANCE: Alterations in prolactin and cortisol levels have been reported in antipsychotic naïve patients with first episode psychosis (FEP). However, it has been studied in very small samples, and inter-group variability has never been studied before. OBJECTIVE: To provide estimates of standardized mean differences (SMD) and inter-group variability for prolactin, cortisol awakening response (CAR) and morning cortisol concentrations in antipsychotic naïve FEP (AN-FEP) patients and healthy controls (HC). DATA SOURCES: BIOSIS, KCI, MEDLINE, Russian Science Citation Index, SciELO, Cochrane, PsycINFO, Web of Science were searched from inception to February 28, 2022. STUDY SELECTION: Peer-reviewed cohort studies that reported on prolactin or cortisol blood concentrations in AN- FEP patients and HC were included. DATA EXTRACTION AND SYNTHESIS: Study characteristics, means and standard deviations (SD) were extracted from each article. Inter group differences in magnitude of effect were estimated using Hedges g. Inter-group variability was estimated with the coefficient of variation ratio (CVR). In both cases estimates were pooled using random-effects meta-analysis. Differences by study-level characteristics were estimated using meta-regression. PRISMA guideline was followed (No. CRD42022303555). MAIN OUTCOMES AND MEASURES: Prolactin, CAR and morning cortisol blood concentrations in AN-FEP group in relation to HC group. RESULTS: Fourteen studies for prolactin (N = 761 for AN-FEP group, N = 687 for HC group) and twelve studies for morning cortisol (N = 434 for AN-FEP group, N = 528 for HC group) were included. No studies were found in CAR in AN-FEP patients. Mean SMD for prolactin blood concentration was 0.88 (95% CI 0.57, 1.20) for male and 0.56 (95% CI 0.26, 0.87) for female. As a group, AN-FEP presented greater inter-group variability for prolactin levels than HC (CVR=1.28, 95% CI 1.02, 1.62). SMD for morning cortisol concentrations was non-significant: 0.34 (95% CI -0.01, 0.69) and no inter-group variability significant differences were detected: CVR= 1.05 (95% CI 0.91, 1.20). Meta-regression analyses for age and quality were non-significant. Funnel plots did not suggest a publication bias. CONCLUSIONS AND RELEVANCE: Increased prolactin levels were found in AN-FEP patients. A greater inter-group variability in the AN-FEP group suggests the existence of patient subgroups with different prolactin levels. No significant abnormalities were found in morning cortisol levels. Further research is needed to clarify whether prolactin concentrations could be used as an illness biomarker.


Assuntos
Antipsicóticos , Transtornos Psicóticos , Esquizofrenia , Humanos , Masculino , Feminino , Prolactina , Hidrocortisona
13.
J Neurosci Res ; 90(10): 1932-40, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22714899

RESUMO

The aim of this work was to analyze the effect of MgSO(4) treatment in the brain after hypoxic-ischemic (HI) injury in premature fetal lambs. Injury was induced by partial occlusion of umbilical cord for 60 min, and then the preterm lambs (80-90% of gestation) were randomly assigned to one of the following groups: control group, in which the animals were managed by conventional mechanical ventilation for 3 hr; 3 hr postpartial cord occlusion (3-hr-PCO) group, in which injured animals were managed by ventilation and then sacrificed 3 hr after HI; and MgSO(4) group, in which animals received 400 mg/kg MgSO(4) for 20 min soon after HI was induced and were managed by ventilation for 3 hr. Brains were analyzed for apoptosis by TUNEL assay. Cell viability and intracellular state studies were assessed by flow cytometry. The delayed death index was significantly increased in the 3-hr-PCO group in comparison with control. Administration of MgSO(4) elicited a delay in cell death that was similar to that in the control group. The 3-hr-PCO group showed a significantly higher concentration of reactive oxygen species, mitochondrial damage, and intracellular calcium in comparison with control and MgSO(4) - treated groups. Our results suggest that MgSO(4) treatment might have potential therapeutic benefits after the HI event.


Assuntos
Animais Recém-Nascidos/fisiologia , Asfixia/patologia , Dano Encefálico Crônico/patologia , Dano Encefálico Crônico/prevenção & controle , Sulfato de Magnésio/farmacologia , Animais , Anexina A5/metabolismo , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Artérias Carótidas/patologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Feminino , Feto/patologia , Corantes Fluorescentes , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Potenciais da Membrana/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Gravidez , Marcação in Situ com Primers , Espécies Reativas de Oxigênio/metabolismo , Rodamina 123 , Ovinos , Medula Espinal/patologia
14.
Pediatr Res ; 72(4): 400-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22821058

RESUMO

BACKGROUND: The endocannabinoids are emerging as natural brain protective substances that exert potentially beneficial effects in several neurological disorders by virtue of their hypothermic, immunomodulatory, vascular, antioxidant, and antiapoptotic actions. This study was undertaken to assess whether preventing the deactivation of the endocannabinoid 2-arachidonoylglycerol (2-AG) with the monoacylglycerol lipase (MAGL) inhibitor URB602 can provide neuroprotective effects in hypoxia-ischemia (HI)-induced brain injury. METHODS: URB602 was administered into the right lateral ventricle 30 min before 7-day-old pup rats were subjected to HI. The neuroprotective effect was evaluated on postnatal day (PN) 14 or at adulthood (PN80) using behavioral and histological analyses. Activated caspase-3 expression and propidium iodide labeling were assessed as indexes of apoptotic and necrotic cell death, respectively. RESULTS: Pretreatment with URB602 reduced apoptotic and necrotic cell death, as well as the infarct volume measured at PN14. At adulthood, URB602-treated HI animals performed better at the T-maze and the Morris maze, and also showed a significant reduction of brain damage. CONCLUSION: These results demonstrate that a pretreatment with URB602 significantly reduces brain damage and improves functional outcome, indicating that endocannabinoid-degrading enzymes may represent an important target for neuroprotection in neonatal ischemic brain injury.


Assuntos
Compostos de Bifenilo/farmacologia , Encéfalo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Monoacilglicerol Lipases/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Ácidos Araquidônicos/metabolismo , Comportamento Animal/efeitos dos fármacos , Compostos de Bifenilo/administração & dosagem , Encéfalo/enzimologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Caspase 3/metabolismo , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/administração & dosagem , Feminino , Glicerídeos/metabolismo , Hipóxia-Isquemia Encefálica/enzimologia , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Hipóxia-Isquemia Encefálica/psicologia , Injeções Intraventriculares , Monoacilglicerol Lipases/metabolismo , Necrose , Fármacos Neuroprotetores/administração & dosagem , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
15.
An Pediatr (Engl Ed) ; 97(4): 280.e1-280.e8, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36115781

RESUMO

Perinatal asphyxia is an event with far-reaching consequences that can lead not only to the development of neonatal encephalopathy, but also to multiple organ failure (MOF). This ailment may result from the redistribution of blood flow, which would preserve the perfusion of vital organs such as the heart, brain and adrenal glands at the expense of other organs. The objective of the study was to determine the incidence and aetiopathogenesis of failure in the organs most frequently involved in neonatal MOF following perinatal asphyxia. We conducted a systematic literature search in the PubMed, Scopus and Cochrane Library databases using the MeSH terms (ischemia AND hypoxia AND multiorgan dysfunction AND neonat*), (asphyxia AND multiorgan dysfunction AND neonat*) and (liver/kidney/digestive OR gastrointestinal/heart injury AND ischemia AND hypoxia AND neonat*). We selected clinical and preclinical studies published after 2000 and excluded case series, letters to the editor, cohort studies without comparison groups and abstracts. In this study, we found that MOF associated with perinatal asphyxia is a frequent phenomenon with a relevant impact on neonatal morbidity and mortality, as it can cause changes not only in the kidney, liver and gastrointestinal tract, but also cardiomyopathy if the ailment is protracted or severe.


Assuntos
Asfixia Neonatal , Insuficiência de Múltiplos Órgãos , Asfixia/complicações , Asfixia Neonatal/complicações , Encéfalo , Feminino , Humanos , Hipóxia , Recém-Nascido , Insuficiência de Múltiplos Órgãos/epidemiologia , Insuficiência de Múltiplos Órgãos/etiologia , Gravidez
16.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36297277

RESUMO

The endocannabinoid system is widespread through the body and carries out a wide variety of functions. However, its involvement in other pathologies, such as cancer, still needs further attention. We aim to investigate the role of CB2 receptor during melanoma and colorectal cancer (CRC) aggressiveness and metastatic growth in the liver. We used the synthetic cannabinoid URB447, a known CB2 agonist and CB1 antagonist drug, and studied prometastatic ability of mouse B16 melanoma and MCA38 CRC cells, by means of proliferation, apoptosis, cell cycle, migration and matrix degradation in vitro upon URB447 treatment. We reported a dose-dependent viability decrease in both tumor types. This result is partly mediated by apoptotic cell death and cell cycle arrest in G1/G0 phase, as observed through flow cytometry. Melanoma and CRC cell migration was affected in a dose-dependent fashion as observed through scratch assay, whereas the secretion of matrix degrading proteins metalloprotease 2 (MMP2) and 9 (MMP9) in tumor cells did not significantly change. Moreover, daily treatment of tumor bearing mice with URB447 decreased the development of liver metastasis in a melanoma model in vivo. This proof of concept study points out to the synthetic cannabinoid URB447 as a potential candidate for deeper studies to confirm its potential as antitumor therapy and liver metastasis treatment for CRC and melanoma.

17.
Front Pediatr ; 10: 793189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573964

RESUMO

Cellular and tissue damage triggered after hypoxia-ischemia (HI) can be generalized and affect the neurogenic niches present in the central nervous system. As neuroregeneration may be critical for optimizing functional recovery in neonatal encephalopathy, the goal of the present work was to investigate the neurogenic response to HI in the neurogenic niche of the subventricular zone (SVZ) in the neonatal piglet. A total of 13 large white male piglets aged <24 h were randomized into two groups: i) HI group (n = 7), animals submitted to transient cerebral HI and resuscitation; and ii) Control group (n = 6), non-HI animals. At 48 h, piglets were euthanized, and the SVZ and its surrounding regions, such as caudate and periventricular white matter, were analyzed for histology using hematoxylin-eosin staining and immunohistochemistry by evaluating the presence of cleaved caspase 3 and TUNEL positive cells, together with the cell proliferation/neurogenesis markers Ki67 (cell proliferation), GFAP (neural stem cells processes), Sox2 (neural stem/progenitor cells), and doublecortin (DCX, a marker of immature migrating neuroblasts). Hypoxic-ischemic piglets showed a decrease in cellularity in the SVZ independent of cell death, together with decreased length of neural stem cells processes, neuroblast chains area, DCX immunoreactivity, and lower number of Ki67 + and Ki67 + Sox2 + cells. These data suggest a reduction in both cell proliferation and neurogenesis in the SVZ of the neonatal piglet, which could in turn compromise the replacement of the lost neurons and the achievement of global repair.

18.
Biomedicines ; 11(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36672536

RESUMO

The endocannabinoid (EC) system is a complex cell-signaling system that participates in a vast number of biological processes since the prenatal period, including the development of the nervous system, brain plasticity, and circuit repair. This neuromodulatory system is also involved in the response to endogenous and environmental insults, being of special relevance in the prevention and/or treatment of vascular disorders, such as stroke and neuroprotection after neonatal brain injury. Perinatal hypoxia-ischemia leading to neonatal encephalopathy is a devastating condition with no therapeutic approach apart from moderate hypothermia, which is effective only in some cases. This overview, therefore, gives a current description of the main components of the EC system (including cannabinoid receptors, ligands, and related enzymes), to later analyze the EC system as a target for neonatal neuroprotection with a special focus on its neurogenic potential after hypoxic-ischemic brain injury.

19.
Antioxidants (Basel) ; 11(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36290659

RESUMO

Background: Lower limb ischemia-reperfusion injury (IRI-LL) is a common major complication of orthopedic surgery, especially in elderly patients. It has previously been demonstrated that folinic acid (FA) reduced IRI-LL damage in 3−4-month-old rats. This current work analyses the effect of FA in the prevention of IRI-LL in elderly animals. Methods: Forty-two 18-month-old male WAG/RijHsd rats were subjected to 3 h of ischemia. Eighteen animals received FA (2.5 mg/kg, ip) 20 min before the end of the ischemia period, while the other half received the same volume of saline solution. The animals were sacrificed after 3 h, 24 h, and 14 days of reperfusion for biochemical (tissue damage markers and electrolytes), histopathological studies of the gastrocnemius muscle and the daily assessment of the limb function by the Rota Rod test, respectively. Results: The administration of FA prior to the end of the ischemia period reduced the increase in LDH and CK observed in non-treated animals by 30−40% (p < 0.0001). When the histological sections were analyzed, FA was found to have reduced the number of damaged muscle fibers per field by 20% (60 ± 17.1 vs. 80.7 ± 16.4, p < 0.0001). The functional test revealed that FA also led to an improvement in the muscle function, assessed by the length of time that the animals kept running on the rod, compared to untreated animals. Conclusions: The administration of FA, prior to the end of the ischemic period, decreases the damage induced by IRI-LL, also achieving a faster recovery of mobility.

20.
ACS Chem Neurosci ; 11(9): 1291-1299, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32271539

RESUMO

The number of functions controlled by the endocannabinoid system in health and disease continues growing over the years. In the brain, these include the modulation of harmful events such as glutamate excitotoxicity, oxidative stress, and inflammation, mainly regulated by activation/blockade of CB1/CB2 cannabinoid receptors. In the present work, we evaluated the capacity of the CB1 antagonist/CB2 agonist synthetic cannabinoid URB447 on reducing neurodegeneration after brain injury. By using a model of hypoxia-ischemia (HI) in neonatal rats, we found that URB447 strongly reduced brain injury when administered before HI. A comparable effect was observed with the CB1 antagonist SR141716A, whereas the CB1 agonist WIN-55,212-2 reduced the effect of URB447. When administered 3 h after HI, which is considered a clinically feasible therapeutic window to treat perinatal brain injury in humans, URB447 reduced neurodegeneration and white matter damage. Markers of astrogliosis and microglial activation also appeared reduced. These results confirm the important role played by the endocannabinoid system in the neurodegenerative process and strongly encourage further research into the mechanisms of URB447-induced neuroprotection.


Assuntos
Lesões Encefálicas , Canabinoides , Doenças Desmielinizantes , Substância Branca , Animais , Animais Recém-Nascidos , Compostos de Benzil , Canabinoides/farmacologia , Hipóxia , Isquemia , Pirróis , Ratos , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA