Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 335: 122276, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37517643

RESUMO

Aflatoxin B1 (AFB1) is the most potent natural carcinogen among mycotoxins. Versicolorin A (VerA) is a precursor of AFB1 biosynthesis and is structurally related to the latter. Although VerA has already been identified as a genotoxin, data on the toxicity of VerA are still scarce, especially at low concentrations. The SOS/umu and miniaturised version of the Ames test in Salmonella Typhimurium strains used in the present study shows that VerA induces point mutations. This effect, like AFB1, depends primarily on metabolic activation of VerA. VerA also induced chromosomal damage in metabolically competent intestinal cells (IPEC-1) detected by the micronucleus assay. Furthermore, results from the standard and enzyme-modified comet assay confirmed the VerA-mediated DNA damage, and we observed that DNA repair pathways were activated upon exposure to VerA, as indicated by the phosphorylation and/or relocation of relevant DNA-repair biomarkers (γH2AX and 53BP1/FANCD2, respectively). In conclusion, VerA induces DNA damage without affecting cell viability at concentrations as low as 0.03 µM, highlighting the danger associated with VerA exposure and calling for more research on the carcinogenicity of this emerging food contaminant.


Assuntos
Micotoxinas , Micotoxinas/toxicidade , Aflatoxina B1/toxicidade , Mutagênicos/toxicidade , Dano ao DNA , Testes de Mutagenicidade/métodos
2.
Toxins (Basel) ; 15(8)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37624248

RESUMO

Mycotoxins are natural food and feed contaminants produced by several molds. The primary mode of exposure in humans and animals is through mixtures. Aflatoxin B1 (AFB1) and sterigmatocystin (STER) are structurally related mycotoxins that share the same biosynthetic route. Few in vivo genotoxicity assays have been performed with STER. In the present genotoxicity study, Wistar rats were dosed orally with STER (20 mg/kg b.w.), AFB1 (0.25 mg/kg b.w.) or a mixture of both in an integrated micronucleus (bone marrow) and comet study (liver and kidney). STER was dosed at the highest feasible dose in corn oil. No increase in the percentage of micronuclei in bone marrow was observed at any condition. Slight DNA damage was detected in the livers of animals treated with AFB1 or the mixture (DNA strand breaks and Fpg (Formamidopyrimidine DNA glycosylase)-sensitive sites, respectively). Plasma, liver, and kidney samples were analyzed with LC-MS/MS demonstrating exposure to both mycotoxins. General toxicity parameters (organs absolute weight, biochemistry, and histopathology) were not altered either individually or in the mixture. The overall absence of individual genotoxicity did not allow us to set any type of interaction in the mixture. However, a possible toxicokinetic interaction was observed.


Assuntos
Aflatoxina B1 , Esterigmatocistina , Ratos , Animais , Humanos , Ratos Wistar , Esterigmatocistina/toxicidade , Aflatoxina B1/toxicidade , Cromatografia Líquida , Espectrometria de Massas em Tandem , Dano ao DNA
3.
Toxins (Basel) ; 14(6)2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35737061

RESUMO

Liver S9 fraction is usually employed in mutagenicity/genotoxicity in vitro assays, but some genotoxic compounds may need another type of bioactivation. In the present work, an alternative S9 fraction from the kidneys was used for the genotoxicity assessment of 12 mycotoxins with the SOS/umu test. The results were compared with liver S9 fraction, and 2-4 independent experiments were performed with each mycotoxin. The expected results were obtained with positive controls (4-nitroquinoline-N-oxide and 2-aminoanthracene) without metabolic activation or with liver S9, but a potent dose-dependent effect with 4-nitroquinoline-N-oxide and no activity of 2-aminoanthracene with kidney S9 were noticed. Aflatoxin B1 was genotoxic with metabolic activation, the effect being greater with liver S9. Sterigmatocystin was clearly genotoxic with liver S9 but equivocal with kidney S9. Ochratoxin A, zearalenone and fumonisin B1 were negative in all conditions. Trichothecenes were negative, except for nivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, T-2 and HT-2 toxins, which showed equivocal results with kidney S9 because a clear dose-response effect was not observed. Most of the mycotoxins have been assessed with kidney S9 and the SOS/umu test for the first time here. The results with the positive controls and the mycotoxins confirm that the organ used for the S9 fraction preparation has an influence on the genotoxic activity of some compounds.


Assuntos
Micotoxinas , 4-Nitroquinolina-1-Óxido , Dano ao DNA , Rim , Fígado , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Micotoxinas/toxicidade , Esterigmatocistina
4.
Nanomaterials (Basel) ; 13(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36615913

RESUMO

A new material composed of a kaolin base with silver nanoparticles (AgNPs) attached to its surface was developed, as an alternative to antibiotics used as supplements in animal feed. As part of its safety assessment, an in vivo geno-toxicological evaluation of this material was conducted in rats. First, a preliminary dose finding study was carried out to decide the doses to be tested in the main study: 50, 300 and 2000 mg/kg b.w. For the main study, a combined strategy composed of the MN test (TG 474) and the comet assay (TG 489), integrated in a repeated dose 28-day oral toxicity study (TG 407), was performed. A No Observed Adverse Effect Level (NOAEL) of 2000 mg of the silver-kaolin formulation/kg b.w. by oral route, for 28 days, was determined. The silver-kaolin formulation did not induce micronuclei in bone marrow, or DNA strand breaks (SBs) or alkali labile sites (ALS) in liver, spleen, kidney or duodenum at any dose. The modified Fpg comet assay did not reveal oxidized bases in the same tissues at the dose of 2000 mg/kg b.w. Silver was quantified by ICP-MS in all the target organs, confirming the negative results obtained under these conditions.

5.
Toxins (Basel) ; 13(10)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34679027

RESUMO

Humans are widely exposed to a great variety of mycotoxins and their mixtures. Therefore, it is important to design strategies that allow prioritizing mycotoxins based on their toxic potential in a time and cost-effective manner. A strategy combining in silico tools (Phase 1), including an expert knowledge-based (DEREK Nexus®, Lhasa Limited, Leeds, UK) and a statistical-based platform (VEGA QSAR©, Mario Negri Institute, Milan, Italy), followed by the in vitro SOS/umu test (Phase 2), was applied to a set of 12 mycotoxins clustered according to their structure into three groups. Phase 1 allowed us to clearly classify group 1 (aflatoxin and sterigmatocystin) as mutagenic and group 3 (ochratoxin A, zearalenone and fumonisin B1) as non-mutagenic. For group 2 (trichothecenes), contradictory conclusions were obtained between the two in silico tools, being out of the applicability domain of many models. Phase 2 confirmed the results obtained in the previous phase for groups 1 and 3. It also provided extra information regarding the role of metabolic activation in aflatoxin B1 and sterigmatocystin mutagenicity. Regarding group 2, equivocal results were obtained in few experiments; however, the group was finally classified as non-mutagenic. The strategy used correlated with the published Ames tests, which detect point mutations. Few alerts for chromosome aberrations could be detected. The SOS/umu test appeared as a good screening test for mutagenicity that can be used in the absence and presence of metabolic activation and independently of Phase 1, although the in silico-in vitro combination gave more information for decision making.


Assuntos
Sistemas Inteligentes , Testes de Mutagenicidade , Micotoxinas/toxicidade , Relação Quantitativa Estrutura-Atividade , Ativação Metabólica , Animais , Dano ao DNA , Masculino , Micotoxinas/química , Ratos Sprague-Dawley , Salmonella typhimurium
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA