Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Semin Cancer Biol ; 69: 279-292, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31870940

RESUMO

Amongst the various types of cancer, breast cancer is a highly heterogeneous disease and known as the leading cause of death among women globally. The extensive interdisciplinary investigation in nanotechnology and cancer biomedical research has been evolved over the years for its effective treatment. However, the advent of chemotherapeutic resistance in breast cancer is one of the major confront researchers are facing in achieving successful chemotherapy. Research in the area of cancer nanotechnology over the years have now been revolutionized through the development of smart polymers, lipids, inorganic materials and eventually their surface-engineering with targeting ligands. Moreover, nanotechnology further extended and brings in the notice the new theranostic approach which combining the therapy and imaging simultaneously. Currently, research is being envisaged in the area of novel nano-pharmaceutical design viz. liposome, nanotubes, polymer lipid hybrid system, which focuses to make the chemotherapy curative and long-lasting. In this review, we aimed to discuss the recent advancement of different surface-engineered/targeted nanomedicines that improved the drug efficacy in breast cancer.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanomedicina , Nanopartículas/administração & dosagem , Animais , Neoplasias da Mama/patologia , Feminino , Humanos , Nanopartículas/química
2.
Sensors (Basel) ; 22(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35214260

RESUMO

Breast cancer is the most common cancer in females and ranked second after skin cancer. The use of natural compounds is a good alternative for the treatment of breast cancer with less toxicity than synthetic drugs. The aim of the present study is to develop and characterize hybrid Apigenin (AN) Nanoparticles (NPs) for oral delivery (AN-NPs). The hybrid AN-NPs were prepared by the self-assembly method using lecithin, chitosan and TPGS. Further, the NPs were optimized by Box-Behnken design (3-factor, 3-level). The hybrid NPs were evaluated for particle size (PS), entrapment efficiency (EE), zeta potential (ZP), and drug release. The optimized hybrid NPs (ON2), were further evaluated for solid state characterization, permeation, antioxidant, cytotoxicity and antimicrobial study. The formulation (ON2) exhibited small PS of 192.6 ± 4.2 nm, high EE 69.35 ± 1.1%, zeta potential of +36.54 mV, and sustained drug release (61.5 ± 2.5% in 24 h), as well as significantly (p < 0.05) enhanced drug permeation and antioxidant activity. The IC50 of pure AN was found to be significantly (p < 0.05) lower than the formulation (ON2). It also showed significantly greater (p < 0.05) antibacterial activity than pure AN against Bacillus subtilis and Salmonella typhimurium. From these findings, it revealed that a hybrid AN polymeric nanoparticle is a good carrier for the treatment of breast cancer.


Assuntos
Quitosana , Nanopartículas , Antioxidantes/farmacologia , Apigenina/farmacologia , Quitosana/química , Portadores de Fármacos/química , Feminino , Humanos , Nanopartículas/química , Tamanho da Partícula
3.
Drug Dev Ind Pharm ; 48(9): 457-469, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36093810

RESUMO

This work designates EthoLeciplex, a vesicular system consisting of phospholipid, CTAB, ethanol and water, as an innovative vesicular system for cutaneous/transfollicular minoxidil (MX) delivery. MX-loaded EthoLeciplex was fabricated by one-step fabrication process. Formulations were designed to study the effects of drug/phospholipid ratio, CTAB/phospholipid ratio, and ethanol concentration on vesicular size, PDI, surface charge and EE%. The optimized formulation was characterized by in vitro release, drug/excipient compatibility, ex vivo skin permeability and safety. A size of 83.6 ± 7.3 to 530.3 ± 29.4 nm, PDI of 0.214 ± 0.01 to 0.542 ± 0.08 and zeta potential of +31.6 ± 4.8 to +57.4 ± 12.5 mV were observed. Encapsulation efficiency was obtained in its maximum value (91.9 ± 16.2%) at the lowest drug/phospholipid ratio, median CTAB/phospholipid and the highest ethanol concentration. The optimized formulation was consisted of 0.3 as drug/lipid ratio, 1.25 as CTAB/lipid ratio and 30% ethanol concentration and showed responses' values in agreement with the predicted results. Differential scanning calorimetry studies suggested that EthoLeciplex existed in flexible state with complete incorporation of MX into lipid bilayer. The cumulative amount of MX permeated from EthoLeciplex, conventional liposome and ethanolic solution after 12 h were 36.3 ± 1.5 µg/ml, 21 ± 2.0 µg/ml and 55 ± 4.0 µg/ml respectively. Based on the remaining amount, the amount of MX accumulated in different skin layers can be predicted in descending order as follows; EthoLeciplex > conventional liposome > MX solution. EthoLeciplex produced marked disorder in the stratum corneum integrity and swelling with no features of skin toxicity. This new cationic system is a promising carrier for cutaneous/transfollicular drug delivery.


Assuntos
Lipossomos , Minoxidil , Minoxidil/metabolismo , Lipossomos/química , Cetrimônio/metabolismo , Administração Cutânea , Pele/metabolismo , Fosfolipídeos/química , Etanol/química , Tamanho da Partícula
4.
Int J Mol Sci ; 23(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35270041

RESUMO

Biopolymer-based antibacterial films are attractive materials for wound dressing application because they possess chemical, mechanical, exudate absorption, drug delivery, antibacterial, and biocompatible properties required to support wound healing. Herein, we fabricated and characterized films composed of arabinoxylan (AX) and sodium alginate (SA) loaded with gentamicin sulfate (GS) for application as a wound dressing. The FTIR, XRD, and thermal analyses show that AX, SA, and GS interacted through hydrogen bonding and were thermally stable. The AXSA film displays desirable wound dressing characteristics: transparency, uniform thickness, smooth surface morphology, tensile strength similar to human skin, mild water/exudate uptake capacity, water transmission rate suitable for wound dressing, and excellent cytocompatibility. In Franz diffusion release studies, >80% GS was released from AXSA films in two phases in 24 h following the Fickian diffusion mechanism. In disk diffusion assay, the AXSA films demonstrated excellent antibacterial effect against E.coli, S. aureus, and P. aeruginosa. Overall, the findings suggest that GS-loaded AXSA films hold potential for further development as antibacterial wound dressing material.


Assuntos
Alginatos , Gentamicinas , Alginatos/química , Antibacterianos/química , Bandagens , Escherichia coli , Gentamicinas/farmacologia , Humanos , Staphylococcus aureus , Água/química , Xilanos
5.
Pharm Dev Technol ; 27(4): 435-447, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531946

RESUMO

Oxidative stress is a leading cause of different diseases. Genistein is a valuable bioflavonoid possessing antioxidant and anti-inflammatory activity but unfortunately, it suffers from low aqueous solubility, extremely poor bioavailability and first pass effect when used in its pure state. The aim of this work was to formulate and characterize genistein-loaded highly phospholipid-containing lipid nanocarriers to improve oral bioavailability and pharmacodynamic performance. Lipid nanocarriers were prepared by the emulsification/sonication technique. The influence of phospholipid percentage (1%-10%) on physicochemical properties, drug release and stability was investigated. The particle size, zeta potential and EE% were in ranges from 211.9 ± 21.6 to 342.3 ± 7.9 nm, -11.6 ± 1.7 to -19.4 ± 3.1 mV and 78.5 ± 4.7% to 92.2 ± 1.9%, respectively. Drug release was less predominant in the case of SLN formulations when compared to corresponding NLC formulations. High phospholipid percentage produced less stable formulations in terms of particle size growth, gelation and heterogeneous particle distributions. DSC, FT-IR and XRD tools revealed that genistein has existed in an amorphous form in NLC4. The bioavailability of NLC4 was approximately 2.6-fold greater than that of conventional suspension. Additionally, lipid peroxidation in liver homogenate and histopathological alterations in liver and kidney sections were particularly improved, providing a promising strategy for oral administration of genistein.


Assuntos
Nanopartículas , Fosfolipídeos , Administração Oral , Disponibilidade Biológica , Portadores de Fármacos/química , Genisteína/química , Genisteína/farmacologia , Nanopartículas/química , Tamanho da Partícula , Fosfolipídeos/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
6.
AAPS PharmSciTech ; 24(1): 6, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36447021

RESUMO

Mesoporous silica nanoparticles (MSNPs) have been proposed as a potential approach for stabilizing the amorphous state of poorly water-soluble actives. This study aimed to improve the physiochemical characteristics of poorly water-soluble quercetin (QT) through a novel lyophilized formulation. Various parameters, including solvent polarity, QT-carrier mass ratio, and adsorption time, were studied to improve the loading of QT into MSNPs. The optimized loaded MSNPs were formulated into lyophilized tablets through a freeze-drying process using hydrophilic polyvinylpyrrolidone (PVP-K30) as a polymeric stabilizer and water-soluble sucrose as a cryoprotectant. The effect of PVP-K30 and sucrose on the particle size, disintegration time, friability, and time required to release 90% of QT were studied using 32 full factorial design. The optimized formula was characterized using different evaluating techniques; for instance, differential scanning calorimetry, X-ray diffractometry, Fourier transform infrared spectroscopy, drug content, moisture content, and saturation solubility. The analysis proved that QT was consistently kept in the nanosize range with a narrow size distribution. The loaded silica nanoparticles and the optimized formulation are in an amorphous state devoid of any chemical interaction with the silica matrix or the lyophilization excipients. The optimized formula also featured low friability (less than 1%), fast disintegration (< 30 s), and a pronounced enhancement in saturation solubility and dissolution rate. Briefly, we established that the lyophilized MSNPs-based tablet would be a potential strategy for improving the rate of dissolution and, ultimately, the bioavailability of the poorly water-soluble QT.


Assuntos
Nanopartículas , Dióxido de Silício , Quercetina , Solubilidade , Comprimidos , Povidona , Excipientes , Água , Sacarose
7.
Drug Dev Ind Pharm ; 47(2): 215-224, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33317339

RESUMO

There are many synthetic drugs in literature have been utilized in healing of the wounds although the natural product specially antioxidants can offer similar if not better biological activity in that regard. Genus Sophora is well known to contain flavonoids and phenolic compounds which have antioxidant and inflammatory effects. So, the aim of the current study was to develop and evaluate chitosan/gelatin based Sophora gibbosa extract-loaded microemulsion as wound dressing. Sophora gibbosa extract (SGE) contained 16 major compounds which have reasonable antioxidant activity. The developed microemulsion showed that Tween 80 produced significant (p < 0.05) lower particle size than Pluronic F127 at the same SGE concentration whereas high concentration of extract results in large particle size. Thermodynamic stability studies showed that using higher concentration of the extract produced less stable formulations. The selected formulation was impregnated in the dressing base (chitosan/gelatin; 2:1 w/w ratio) which exhibited more water absorption. In vivo evaluation revealed that the dressing displayed superior wound repair compared to the control in terms histological examination and determination of alpha smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA). Thus, SGE-loaded microemulsion-impregnated gelatin/chitosan could be a potential candidate for the wound healing.


Assuntos
Quitosana , Extratos Vegetais/química , Sophora , Bandagens , Gelatina , Extratos Vegetais/isolamento & purificação , Cicatrização
8.
Molecules ; 26(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072306

RESUMO

The present research work is designed to prepare and evaluate piperine liposomes and piperine-chitosan-coated liposomes for oral delivery. Piperine (PPN) is a water-insoluble bioactive compound used for different diseases. The prepared formulations were evaluated for physicochemical study, mucoadhesive study, permeation study and in vitro cytotoxic study using the MCF7 breast cancer cell line. Piperine-loaded liposomes (PLF) were prepared by the thin-film evaporation method. The selected liposomes were coated with chitosan (PLFC) by electrostatic deposition to enhance the mucoadhesive property and in vitro therapeutic efficacy. Based on the findings of the study, the prepared PPN liposomes (PLF3) and chitosan coated PPN liposomes (PLF3C1) showed a nanometric size range of 165.7 ± 7.4 to 243.4 ± 7.5, a narrow polydispersity index (>0.3) and zeta potential (-7.1 to 29.8 mV). The average encapsulation efficiency was found to be between 60 and 80% for all prepared formulations. The drug release and permeation study profile showed biphasic release behavior and enhanced PPN permeation. The in vitro antioxidant study results showed a comparable antioxidant activity with pure PPN. The anticancer study depicted that the cell viability assay of tested PLF3C2 has significantly (p < 0.001)) reduced the IC50 when compared with pure PPN. The study revealed that oral chitosan-coated liposomes are a promising delivery system for the PPN and can increase the therapeutic efficacy against the breast cancer cell line.


Assuntos
Alcaloides/química , Benzodioxóis/química , Quitosana/química , Lipossomos/química , Piperidinas/química , Alcamidas Poli-Insaturadas/química , Antineoplásicos/química , Antioxidantes/química , Adesão Celular , Sobrevivência Celular , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Técnicas In Vitro , Concentração Inibidora 50 , Células MCF-7 , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Permeabilidade , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Cutan Ocul Toxicol ; 40(4): 338-349, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34340615

RESUMO

Background:Conventional delivery systems like solution and suspension are commonly used for the treatment of ocular diseases but have low corneal residence time and hence the duration of effect is limited. These drawbacks of conventional systems can be reduced by preparing bioadhesive chitosan (CH) coated noisome.Methods: Niosomes (NIM) of carteolol (CT) were developed by the thin-film hydration method and optimised by the Box-Behnken statistical design. Further, the optimised CT-NIM was coated with CH to enhance the ocular residence time . The optimised formulation was evaluated for vesicle size, entrapment efficiency, and in-vitro drug release and transcorneal permeation, histopathology, etc.Results: CT-NIM-opt showed the vesicle size and entrapment efficiency of 235 ± 3.54 nm, and 70.45 ± 0.87%, respectively. DSC spectra exhibited that CT was completely encapsulated into the CH-CT-NIM matrix. Drug release from CH-CT-NIM-opt was more sustained (68.28 ± 4.2%) than CT-NIM (75.69 ± 4.5% in 12 h) and CT solution (99.89 ± 2.8% in 4 h). The CH-CT-NIM-opt represented a strong bio-adhesion (89.76 ± 3.6%) than CT-NIM-opt (15.65 ± 3.4%). The permeation flux exhibited 1.13-fold higher permeation than CT-NIM and 3.23 fold than CT solution. The corneal hydration was found to be within the limit value. The histopathology study exhibited no structural damage to the cornea . HET-CAM results showed zero scores indicating no bleeding or haemorrhage. CH-CT-NIM-opt was found to be isotonic and exhibited good stability when stored at 4 °C for the stated duration of time.Conclusion: The above findings suggested that NIM can be a potential carrier for the delivery of CT with better ocular residence time.


Assuntos
Antagonistas Adrenérgicos beta/administração & dosagem , Carteolol/administração & dosagem , Quitosana/química , Glaucoma de Ângulo Aberto/tratamento farmacológico , Administração Oftálmica , Antagonistas Adrenérgicos beta/farmacocinética , Animais , Carteolol/farmacocinética , Córnea/efeitos dos fármacos , Córnea/metabolismo , Liberação Controlada de Fármacos , Cabras , Humanos , Lipossomos , Fatores de Tempo
10.
AAPS PharmSciTech ; 22(7): 231, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34477999

RESUMO

In the present research work, surface-modified nanostructured lipid carriers (NLCs) with chitosan (CH) were prepared to improve the therapeutic efficacy of piperine (PP). NLCs were developed and optimized (CH-PP-NLCs-opt) by design expert software and the selected NLCs surface was coated with chitosan (0.2% w/v). CH-PP-NLCs-opt have shown a particle size of 149.34 ± 4.54 nm and entrapment efficiency of 80.65 ± 1.23%. The results of the solid-state characterization study exhibited that PP enclosed in lipids and present amorphous form. It might be due to the nanoparticle size of NLCs. The drug release study revealed PP-NLCs-opt and CH-PP-NLCs-opt exhibited significant (P < 0.05) difference in PP release (88.87 ± 5.23% and 76.34 ± 4.54%) as compared to pure PP (19.02 ± 2.87%). CH-PP-NLCs-opt exhibited strong bioadhesion than PP-NLCs-opt which has a positive influence the drug permeation and absorption. CH-PP-NLCs-opt showed higher permeation (1083.34 ± 34.15 µg/ cm2) than pure PP (106.65 ± 15.44 µg/cm2) and PP-NLCs-opt (732.45 ± 28.56 µg/ cm2). The significantly enhanced bioavailability of PP was observed from CH-PP-NLCs-opt (3.76- and 1.21-fold) than PP-dispersion and PP-NLCs-opt. The diabetes was induced in rats by a single intraperitoneal administration of streptozotocin (STZ, 40 mg/kg, citrate buffer pH 4.5), and results revealed that PP-NLCs-opt and CH-PP-NLCs-opt reduce the blood glucose level (28.26% and 36.52% respectively) as compared to PP-dispersion (10.87%). It also helps to maintain the altered biochemical parameters. In conclusion, CH-PP-NLC can be a novel oral nanocarrier for the management of diabetes.


Assuntos
Quitosana , Portadores de Fármacos , Nanoestruturas , Administração Oral , Alcaloides , Animais , Benzodioxóis , Lipídeos , Tamanho da Partícula , Piperidinas , Alcamidas Poli-Insaturadas , Ratos
11.
Saudi Pharm J ; 29(3): 269-279, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33981176

RESUMO

AIM: Diabetic (type-2) is a metabolic disease characterized by increased blood glucose level from the normal level. In the present study, apigenin (AG) loaded lipid vesicles (bilosomes: BIL) was prepared, optimized and evaluated for the oral therapeutic efficacy. EXPERIMENTAL: AG-BIL was prepared by a thin-film evaporation method using cholesterol, span 60 and sodium deoxycholate. The prepared formulation was optimized by 3-factor and 3-level Box-Behnken design using particle size, entrapment efficiency and drug release as a response. The selected formulation further evaluated for ex-vivo permeation, in vivo pharmacokinetic and pharmacodynamics study. RESULTS: The optimized AG bilosomes (AG-BILopt) has shown the vesicle size 183.25 ± 2.43 nm, entrapment efficiency 81.67 ± 4.87%. TEM image showed a spherical shape vesicle with sharp boundaries. The drug release study revealed a significant enhancement in AG release (79.45 ± 4.18%) from AG-BILopt as compared to free AG-dispersion (25.47 ± 3.64%). The permeation and pharmacokinetic studies result revealed 4.49 times higher flux and 4.67 folds higher AUC0-t than free AG-dispersion. The antidiabetic activity results showed significant (P < 0.05) enhancement in therapeutic efficacy than free AG-dispersion. The results also showed marked improvement in biochemical parameters. CONCLUSION: Our findings suggested, the prepared apigenin loaded bilosomes was found to be an efficient delivery in the therapeutic efficacy in diabetes.

12.
Drug Dev Ind Pharm ; 46(9): 1458-1467, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32729728

RESUMO

The present study was designed to prepare dapagliflozin (DFG) loaded ternary solid dispersions (SDs) using the carrier blend polyethylene glycol 6000 (PEG 6000) and poloxamer 188 (PLX 188). The prepared DFG-SDs were evaluated for solubility study, physicochemical characterization and molecular simulation study. The prepared DFG-SDs showed significant higher solubility and dissolution vis-a-vis pure DFG and DFG physical mixture. The composition DFG:PEG:PLX (1:2.25:0.75 mM) showed the highest solubility (0.476 ± 0.016 mg/mL). The physicochemical characterization confirms the polymorphic transition of DFG from crystalline state to stable amorphous form. The prepared DFG-SDs showed a significantly higher dissolution (64.78 ± 2.34% to 78.41 ± 2.39%) than pure DFG (15.70 ± 3.54%). DFG-SD2 showed a significantly enhanced drug permeation (p<.05) (58.76 ± 4.65 µg/cm) as compared to pure DFG (14.97 ± 3.32 µg/cm). The molecular docking study result revealed a good hydrophobic interaction of DFG with the used carrier due to the lowest energy pose. The interaction occurs between the methylene bridges and the central hydrophobic chain of polyoxypropylene of the polymer. Therefore, DFG-SDs prepared by microwave irradiation method using hydrophilic carrier blend might be a promising strategy for improving the solubility and in vitro dissolution performance.


Assuntos
Compostos Benzidrílicos/química , Glucosídeos/química , Poloxâmero , Polietilenoglicóis , Portadores de Fármacos , Simulação de Acoplamento Molecular , Polietilenoglicóis/química , Solubilidade
13.
AAPS PharmSciTech ; 21(5): 167, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32504176

RESUMO

Ciprofloxacin is a commonly used antibiotic for treatment of bacterial conjunctivitis. The conventional eye drop dosage form is the widely used mode of treatment, but it has low corneal residence time. This drawback can be overcome by developing a bioadhesive noisome system (chitosan-coated) for enhanced corneal residence time. The niosomes were prepared by thin-film hydration technique and optimized by using Box-Behnken statistical design software. Cholesterol (A), Span 60 (B), and sonication time (C) were selected as independent variables, whereas vesicle size (Y1 in nm), entrapment efficiency (Y2 in %), and drug release (Y3 in %) were chosen as dependent variables. The vesicle size, entrapment efficiency, and drug release of optimized CIP niosomes (CIP-NSMopt) were found to be 180.34 ± 5.13 nm, 78.32 ± 4.49%, and 82.87 ± 4.01% (in 12 h), respectively. Further CIP-NSMopt was coated with different chitosan concentrations (0.1 to 0.3%) to enhance mucoadhesion. Finally, optimized chitosan-coated niosomes (chitosomes; CIP-CHTopt) showed a vesicle size of 210.65 ± 2.76 nm, zeta potential of - 35.17 ± 2.25Mv, and PDI of 0.221. CIP-CHTopt exhibited sustained release profile (75.31% in 12 h) with the Korsmeyer-Peppas kinetic model (R2 = 0.980). The permeation study showed 1.79-fold enhancements in corneal permeation compared with marketed CIP eye drop. The hen's egg chorioallantoic membrane (HET-CAM) study showed 0 scores (no irritation), and it was further confirmed by corneal hydration and histopathology study. The antimicrobial study exhibited a significant high zone (P < 0.05) of inhibition against tested organism. Our findings demonstrated that chitosan-coated niosomes are a promising drug carrier to enhance corneal contact time and treatment of bacterial conjunctivitis.


Assuntos
Antibacterianos/química , Quitosana/química , Membrana Corioalantoide/efeitos dos fármacos , Ciprofloxacina/química , Soluções Oftálmicas/química , Animais , Galinhas , Ciprofloxacina/farmacologia , Ciprofloxacina/toxicidade , Portadores de Fármacos , Composição de Medicamentos , Lipossomos/química
14.
Saudi Pharm J ; 28(5): 615-620, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32435143

RESUMO

OBJECTIVE: Researchers have confirmed that chronic administration of drugs at high doses causes genotoxicity which serve as first step in development of cancers. Apremilast, a phosphodiesterase-4 inhibitor is Food and Drug Administration (FDA) approved drug for Psoriatic Arthritis. The present study designed to conduct genotoxicity testing using the genotoxic study which give simple, sensitive, economical and fast tools for the assessment of damage of genetic material. METHODS: To conduct genotoxicity study of Apremilast, 60 Swiss albino male mice divided into 6 groups (n = 10). Group1 served as a normal control group without any treatment, Group 2 treated as a disease control and administered with cyclophosphamide 40 mg/kg, IP. Group 3, 4, 5 and 6 treated as test groups and received 10, 20, 40 and 80 mg/kg/day Apremilast respectively. The total duration of study was 13 weeks. At termination day animals were sacrificed and chromosomal aberration assay (BMCAA) and micronucleus assay (BMMNA) were performed to know the genotoxicity potential of Apremilast. RESULTS: The results indicates significant rise in chromosomal aberrations (CA) frequency in bone marrow cells and decrease in the MI of the disease control animals as well as Apremilast treated groups. Further significant (p < 0.001; p < 0.0001) increase in score of micronucleated polychromatic erythrocytes (MNPCEs) and percentage of micronucleated PCEs per 1000 PCEs and decrease in the ratio of polychromatic/normochromatic erythrocytes (PCE/NCE) was observed in micronucleus assay. Genotoxic effect increases with the increase of Apremilast dose. Conclusion: Finding of present indicates that Apremilast shows genotoxic potential on high administration although further detailed toxicity studies required for confirmations.

15.
Pharmaceutics ; 16(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38399350

RESUMO

The journal retracts the article, "Thymoquinone-Loaded Soy-Phospholipid-Based Phytosomes Exhibit Anticancer Potential against Human Lung Cancer Cells" [...].

16.
17.
Nanomedicine (Lond) ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651634

RESUMO

Topical infection affects nearly one-third of the world's population; it may result from poor sanitation, hygienic conditions and crowded living and working conditions that accelerate the spread of topical infectious diseases. The problems associated with the anti-infective agents are drug resistance and long-term therapy. Secondary metabolites are obtained from plants, microorganisms and animals, but they are metabolized inside the human body. The integration of nanotechnology into secondary metabolites is gaining attention due to their interaction at the subatomic and skin-tissue levels. Hydrogel, liposomes, lipidic nanoparticles, polymeric nanoparticles and metallic nanoparticles are the most suitable carriers for secondary metabolite delivery. Therefore, the present review article extensively discusses the topical applications of nanomedicines for the effective delivery of secondary metabolites.

19.
Acta Chim Slov ; 69(2): 483-488, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35861064

RESUMO

The poor aqueous solubility of candidate drugs has presented a great challenge to formulation scientists for their effective oral delivery. Poor solubility is often associated with poor dissolution behavior and, subsequently, poor bioavailability for those drugs when intestinal absorption is dissolution rate limited. In the present study electrospun polymeric nanofibers were developed to address the poor aqueous solubility of ibuprofen, a Biopharmaceutic Classification System (BCS) class-II drug. Hydrophilic spinnable polymers like polyvinyl pyrrolidone were deployed as a carrier system for the fabrication of nanofibers. The electrospinning parameters like flow rate, voltage, and spinneret to collector distance were optimized. The fabricated ibuprofen-loaded nanofibers were characterized using scanning electron microscopy and differential scanning calorimetry. Drug release studies and ex vivo intestinal absorption studies were also carried out. The nanofiber-based platform significantly improved in vitro absorption of ibuprofen compared to pure ibuprofen crystals.


Assuntos
Ibuprofeno , Nanofibras , Varredura Diferencial de Calorimetria , Liberação Controlada de Fármacos , Microscopia Eletrônica de Varredura , Nanofibras/química , Preparações Farmacêuticas , Polímeros/química , Solubilidade
20.
Polymers (Basel) ; 14(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35567035

RESUMO

Microcrystalline cellulose (MCC) is a versatile polymer commonly employed in food, chemical, and biomedical formulations. Lagenaria siceraria (bottle gourd) fruit is consumed in many parts of the world, and its pedicle is discarded as waste. In the quest for a novel renewable source of the MCC, the present study investigates the extraction and characterization of MCC from the pedicle of Lagenaria siceraria fruits. The MCC was extracted by sequentially treating pedicles with water, alkali, bleaching (sodium chlorite), and dilute sulfuric acid (acid hydrolysis). The removal of associated impurities from pedicle fibers was confirmed by Fourier transform infrared analyses. The extracted MCC exhibited a characteristic crystalline structure of cellulose in X-ray diffraction with a 64.53% crystallinity index. The scanning electron microscopy (SEM) showed the variation in the morphology of the fibers and the formation of MCC of approximately 100 µm. The thermogravimetric analysis (TGA) indicated higher thermal stability of MCC. MCC production from biowaste (pedicle) holds potential for application as an emulsifier, stabilizer, and thickener in the chemical, pharmaceutical, and food industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA