Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36838770

RESUMO

Presently, the rising concerns about the fossil fuel crisis and ecological deterioration have greatly affected the world economy and hence have attracted attention to the utilization of renewable energies. Among the renewable energy being developed, supercapacitors hold great promise in broad applications such as electric vehicles. Presently, the main challenge facing supercapacitors is the amount of energy stored. This, however, does not satisfy the increasing demand for higher energy storage devices, and therefore, intensive research is being undertaken to overcome the challenges of low energy density. The purpose of this review is to report on solid polymer electrolytes (SPEs) based on polyvinyl alcohol (PVA). The review discussed the PVA as a host polymer in SPEs followed by a discussion on the influence of conducting salts. The formation of SPEs as well as the ion transport mechanism in PVA SPEs were discussed. The application and development of PVA-based polymer electrolytes on supercapacitors and other energy storage devices were elucidated. The fundamentals of electrochemical characterization for analyzing the mechanism of supercapacitor applications, such as EIS, LSV and dielectric constant, are highlighted. Similarly, thermodynamic transport models of ions and their mechanism about temperature based on Arrhenius and Vogel-Tammann-Fulcher (VTF) are analyzed. Methods for enhancing the electrochemical performance of PVA-based SPEs were reported. Likely challenges facing the current electrolytes are well discussed. Finally, research directions to overcome the present challenges in producing SPEs are proposed. Therefore, this review is expected to be source material for other researchers concerned with the development of PVA-based SPE material.


Assuntos
Polímeros , Álcool de Polivinil , Etanol , Eletrólitos , Sais
2.
Appl Radiat Isot ; 129: 130-134, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28843699

RESUMO

Phantoms are devices that simulate human tissues including soft tissues, lungs, and bones in medical and health physics. The purpose of this work was to investigate the differential dose absorption in several commercially available low-cost materials as substitutes to human tissues using Gafchromic XR-QA2 film. The measurement of absorbed dose by different materials of various densities was made using the film to establish the relationship between the absorbed dose and the material density. Materials investigated included soft board materials, Perspex, chicken bone, Jeltrate, chalk, cow bone, marble, and aluminum, which have varying densities from 0.26 to 2.67gcm-3. The absorbed dose increased as the density and atomic number of the material increased. The absorbed dose to the density can be well represented by a polynomial function for the materials used.


Assuntos
Dosimetria Fotográfica/instrumentação , Imagens de Fantasmas , Filme para Raios X , Animais , Calibragem , Relação Dose-Resposta à Radiação , Desenho de Equipamento , Dosimetria Fotográfica/estatística & dados numéricos , Humanos , Doses de Radiação , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA