Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36234862

RESUMO

Hydrogen production is produced for future green energy. The radiation-chemical yield for seawater without a catalyst, with Zr, and with Zr1%Nb (Zr = 99% Nb = 1%) were (G(H2) = 0.81, 307.1, and 437.4 molecules/100 eV, respectively. The radiation-thermal water decomposition increased in γ-radiation of the Zr1%Nb + SW system with increasing temperature. At T = 1273 K, it prevails over radiation processes. During the radiation and heat radiation heterogeneous procedures in the Zr1% Nb + SW system, the production of surface energetic sites and secondary electrons accelerated the accumulation of molecular hydrogen and Zr1%Nb oxidation. Thermal radiation and thermal processes caused the metal phase to collect thermal surface energetic sites for water breakdown and Zr 1%Nb oxidation starting at T = 573 K.

2.
Molecules ; 27(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36080126

RESUMO

The presence of triclosan in water is toxic to human beings, hazardous to the environment and creates side effects and problems because this is an endocrine-disturbing water pollutant. Therefore, there is a great need for the separation of this notorious water pollutant at an effective, economic and eco-friendly level. The interface sorption was achieved on synthesized ionic liquid-based nanocomposites. An N-methyl butyl imidazolium bromide ionic liquid copper oxide nanocomposite was prepared using green methods and characterized by using proper spectroscopic methods. The nanocomposite was used to remove triclosan in water with the best conditions of time 30 min, concentration 100 µg/L, pH 8.0, dose 1.0 g/L and temperature 25 °C, with 90.2 µg/g removal capacity. The results obeyed Langmuir, Temkin and D-Rs isotherms with a first-order kinetic and liquid-film-diffusion kinetic model. The positive entropy value was 0.47 kJ/mol K, while the negative value of enthalpy was -0.11 kJ/mol. The negative values of free energy were -53.18, -74.17 and -76.14 kJ/mol at 20, 25 and 30 °C. These values confirmed exothermic and spontaneous sorption of triclosan. The combined effects of 3D parameters were also discussed. The supramolecular model was developed by simulation and chemical studies and suggested electrovalent bonding between triclosan and N-methyl butyl imidazolium bromide ionic liquid. Finally, this method is assumed as valuable for the elimination of triclosan in water.


Assuntos
Líquidos Iônicos , Nanocompostos , Triclosan , Poluentes Químicos da Água , Poluentes da Água , Purificação da Água , Adsorção , Brometos , Humanos , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Água/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
3.
Environ Sci Pollut Res Int ; 30(13): 38970-38981, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36593318

RESUMO

Due to the none-biodegradable and carcinogenic nature of toxic metal ions, a novel sorption-electroflotation method was developed using carbon nanomaterials. The metal ions removed were Ni(II), Co(II), Zn(II), Fe(II), and Cu(II) using carbon nanotubes (CNTs) and carbon nanoshells (CNSs). The porous structure, morphology, composition, and surface properties of carbon nanomaterials, viz. the presence and number of functional groups are characterized by methods of low-temperature nitrogen adsorption, scanning electron microscopy, Boem, X-ray photoelectron spectroscopy. The surface of the materials was rough with varied particle sizes. Regardless of the sorbed ion and the nature of the nanomaterial, the Langmuir, Temkin, Dubinin-Radushkevich, and Flory-Higgins models were applied to the data. The maximum sorption removal on CNTs were 15.0-69.0, 36.0-75.0, 33.0-72.0, 18.0-70.0, 29.0-69.0% for Fe(II), Zn(II), Co(II), Cu(II), and Ni(II) while these values on CNSs were 19.0-53, 23.0-58.0, 30.0-79.0, 12.0-46.0, and 41.0-86%. But after simultaneous sorption-electroflotation, the percentage removal was 99.0, 97.0, 95.0, 99.0, and 52% for these metal ions, indicating an excellent combination of sorption-electro flotation. The method is highly beneficial to work in varied pH ranges as sorption and electroflotation gave the best results in acidic and basic mediums. The method is very effective, efficient, and inexpensive and can be used for the removal of the reported metal ions in water.


Assuntos
Metais Pesados , Nanotubos de Carbono , Poluentes Químicos da Água , Adsorção , Água , Metais Pesados/química , Compostos Ferrosos , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química , Cinética , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA