Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Molecules ; 28(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37630338

RESUMO

We report herein the synthesis, docking studies and biological evaluation of a series of new 4-chloro-2-((5-aryl-1,3,4-oxadiazol-2-yl)amino)phenol analogues (6a-h). The new compounds were designed based on the oxadiazole-linked aryl core of tubulin inhibitors of IMC-038525 and IMC-094332, prepared in five steps and further characterized via spectral analyses. The anticancer activity of the compounds was assessed against several cancer cell lines belonging to nine different panels as per National Cancer Institute (NCI US) protocol. 4-Chloro-2-((5-(3,4,5-trimethoxyphenyl)-1,3,4-oxadiazol-2-yl)amino)phenol (6h) demonstrated significant anticancer activity against SNB-19 (PGI = 65.12), NCI-H460 (PGI = 55.61), and SNB-75 (PGI = 54.68) at 10 µM. The compounds were subjected to molecular docking studies against the active site of the tubulin-combretastatin A4 complex (PDB ID: 5LYJ); they displayed efficient binding and ligand 4h (with docking score = -8.030 kcal/mol) lay within the hydrophobic cavity surrounded by important residues Leu252, Ala250, Leu248, Leu242, Cys241, Val238, Ile318, Ala317, and Ala316. Furthermore, the antibacterial activity of some of the compounds was found to be promising. 4-Chloro-2-((5-(4-nitrophenyl)-1,3,4-oxadiazol-2-yl)amino)phenol (6c) displayed the most promising antibacterial activity against both Gram-negative as well as Gram-positive bacteria with MICs of 8 µg/mL and a zone of inhibition ranging from 17.0 ± 0.40 to 17.0 ± 0.15 mm at 200 µg/mL; however, the standard drug ciprofloxacin exhibited antibacterial activity with MIC values of 4 µg/mL.


Assuntos
Fenol , Fenóis , Simulação de Acoplamento Molecular , Fenóis/farmacologia , Antibacterianos/farmacologia
2.
Molecules ; 28(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37836779

RESUMO

In the current study, we described the synthesis of ten new 5-(3-Bromophenyl)-N-aryl-4H-1,2,4-triazol-3-amine analogs (4a-j), as well as their characterization, anticancer activity, molecular docking studies, ADME, and toxicity prediction. The title compounds (4a-j) were prepared in three steps, starting from substituted anilines in a satisfactory yield, followed by their characterization via spectroscopic techniques. The National Cancer Institute (NCI US) protocol was followed to test the compounds' (4a-j) anticancer activity against nine panels of 58 cancer cell lines at a concentration of 10-5 M, and growth percent (GP) as well as percent growth inhibition (PGI) were calculated. Some of the compounds demonstrated significant anticancer activity against a few cancer cell lines. The CNS cancer cell line SNB-75, which showed a PGI of 41.25 percent, was discovered to be the most sensitive cancer cell line to the tested compound 4e. The mean GP of compound 4i was found to be the most promising among the series of compounds. The five cancer cell lines that were found to be the most susceptible to compound 4i were SNB-75, UO-31, CCRF-CEM, EKVX, and OVCAR-5; these five cell lines showed PGIs of 38.94, 30.14, 26.92, 26.61, and 23.12 percent, respectively, at 10-5 M. The inhibition of tubulin is one of the primary molecular targets of many anticancer agents; hence, the compounds (4a-j) were further subjected to molecular docking studies looking at the tubulin-combretastatin A-4 binding site (PDB ID: 5LYJ) of tubulin. The binding affinities were found to be efficient, ranging from -6.502 to -8.341 kcal/mol, with two major electrostatic interactions observed: H-bond and halogen bond. Ligand 4i had a binding affinity of -8.149 kcal/mol with the tubulin-combretastatin A-4 binding site and displayed a H-bond interaction with the residue Asn258. The ADME and toxicity prediction studies for each compound were carried out using SwissADME and ProTox-II software. None of the compounds' ADME predictions showed that they violated Lipinski's rule of five. All of the compounds were also predicted to have LD50 values between 440 and 500 mg/kg, putting them all in class IV toxicity, according to the toxicity prediction. The current discovery could potentially open up the opportunity for further developments in cancer.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Tubulina (Proteína)/metabolismo , Aminas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Proliferação de Células , Estrutura Molecular
3.
Biotechnol Appl Biochem ; 69(5): 2205-2221, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34775646

RESUMO

The present research work describes development of dual drug-loaded lipid-polymer hybrid nanoparticles (LPHNPs) of anticancer therapeutics for the management of colon cancer. The epidermal growth factor (EGF)-functionalized LPHNPs coloaded with 5-fluorouracil (FU) and sulforaphane (SFN) were prepared by one-step nanoprecipitation method. Box-Behnken design was applied for optimizing the material attributes and process parameters. The optimized LPHNPs revealed particle size 198 nm, polydispersity index 0.3, zeta potential -25.3 mV, and drug loading efficiency 19-20.3% for 5-FU and SFN, respectively. EGF functionalization on LPHNPs was confirmed from positive magnitude of zeta potential to 21.3 mV as compared with the plain LPHNPs. In vitro drug release performance indicated sustained and non-Fickian mechanism release nature of the drugs from LPHNPs. Anticancer activity evaluation in HCT-15 colon cancer cells showed significant reduction (p < 0.001) in the cell growth and cytotoxicity of the investigated drugs from various treatments in the order: EGF-functionalized LPHNPs > plain LPHNPs > free drug suspensions. Overall, the research work corroborated improved treatment efficacy of EGF-functionalized LPHNPs for delivering chemotherapeutic agents for the management of colon carcinoma.


Assuntos
Carcinoma , Neoplasias do Colo , Nanopartículas , Humanos , Polímeros , Disponibilidade Biológica , Fluoruracila/farmacologia , Fator de Crescimento Epidérmico , Lipídeos , Sobrevivência Celular , Tamanho da Partícula , Neoplasias do Colo/tratamento farmacológico , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos
4.
Molecules ; 26(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924091

RESUMO

Ten benzoxazole clubbed 2-pyrrolidinones (11-20) as human monoacylglycerol lipase inhibitors were designed on the criteria fulfilling the structural requirements and on the basis of previously reported inhibitors. The designed, synthesized, and characterized compounds (11-20) were screened against monoacylglycerol lipase (MAGL) in order to find potential inhibitors. Compounds 19 (4-NO2 derivative) and 20 (4-SO2NH2 derivative), with an IC50 value of 8.4 and 7.6 nM, were found most active, respectively. Both of them showed micromolar potency (IC50 value above 50 µM) against a close analogue, fatty acid amide hydrolase (FAAH), therefore considered as selective inhibitors of MAGL. Molecular docking studies of compounds 19 and 20 revealed that carbonyl of 2-pyrrolidinone moiety sited at the oxyanion hole of catalytic site of the enzyme stabilized with three hydrogen bonds (~2 Å) with Ala51, Met123, and Ser122, the amino acid residues responsible for the catalytic function of the enzyme. Remarkably, the physiochemical and pharmacokinetic properties of compounds 19 and 20, computed by QikProp, were found to be in the qualifying range as per the proposed guideline for good orally bioactive CNS drugs. In formalin-induced nociception test, compound 20 reduced the pain response in acute and late stages in a dose-dependent manner. They significantly demonstrated the reduction in pain response, having better potency than the positive control gabapentin (GBP), at 30 mg/kg dose. Compounds 19 and 20 were submitted to NCI, USA, for anticancer activity screening. Compounds 19 (NSC: 778839) and 20 (NSC: 778842) were found to have good anticancer activity on SNB-75 cell line of CNS cancer, exhibiting 35.49 and 31.88% growth inhibition (% GI), respectively.


Assuntos
Antineoplásicos/química , Benzoxazóis/química , Monoacilglicerol Lipases/antagonistas & inibidores , Pirrolidinonas/farmacologia , Analgésicos/química , Analgésicos/farmacologia , Antineoplásicos/farmacologia , Benzoxazóis/farmacologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Monoacilglicerol Lipases/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pirrolidinonas/química , Relação Estrutura-Atividade
5.
Saudi Pharm J ; 29(8): 843-856, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34408545

RESUMO

The current study focuses on the development and evaluation of nano lipidic carriers (NLCs) for codelivery of sorafenib (SRF) and ganoderic acid (GA) therapy in order to treat hepatocellular carcinoma (HCC). The dual drug-loaded NLCs were prepared by hot microemulsion technique, where SRF and GA as the drugs, Precirol ATO5, Capmul PG8 as the lipids, while Solutol HS15 and ethanol was used as surfactant and cosolvents. The optimized drug-loaded NLCs were extensively characterized through in vitro and in vivo studies. The optimized formulation had particle size 29.28 nm, entrapment efficiency 93.1%, and loading capacity 14.21%. In vitro drug release studies revealed>64% of the drug was released in the first 6 h. The enzymatic stability analysis revealed stable nature of NLCs in various gastric pH, while accelerated stability analysis at 25◦C/60% RH indicated the insignificant effect of studied condition on particle size, entrapment efficiency, and loading capacity of NLCs. The cytotoxicity performed on HepG2 cells indicated higher cytotoxicity of SRF and GA-loaded NLCs as compared to the free drugs (p < 0.05). Furthermore, the optimized formulation suppressed the development of hepatic nodules in the Wistar rats and significantly reduced the levels of hepatic enzymes and nonhepatic elements against DEN intoxication. The SRF and GA-loaded NLCs also showed a significant effect in suppressing the tumor growth and inflammatory cytokines in the experimental study. Further, histopathology study of rats treated SRF and GA-loaded NLCs and DEN showed absence of necrosis, apoptosis, and disorganized hepatic parenchyma, etc. over other treated groups of rats. Overall, the dual drug-loaded NLCs outperformed over the plain drugs in terms of chemoprotection, implying superior therapeutic action and most significantly eliminating the hepatic toxicity induced by DEN in Wistar rat model.

6.
Molecules ; 25(23)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260422

RESUMO

Sepsis aggregates undesirable immune response causing depression of ventricular myocardium and diastolic dysfunction. This present study examined the effect of a plant-derived flavone tangeretin (TG) on autophagy and reduction in myocardial dysfunction. The sepsis was induced by cecum ligation and puncture (CLP) in male Sprague-Dawley rats. Abnormal changes were seen in the heart after the sepsis induction. These abnormalities were analyzed based on the cardiac markers, namely Cardiac myosin light chain-1 (cMLC1) and Cardiac troponin I (cTnl), echocardiography, and plasma parameters, like Lactate dehydrogenase (LDH) and Creatinine kinase (CK). Microanatomy of the heart was studied using hematoxylin and eosin stained histopathological samples of cardiac tissue. Western blot technique was used to detect the nature and extent of protein with the amount of a specific RNA (gene expression) in the cardiac homogenate. Oxidative damage was analyzed using redox marker, reduced glutathione. This study successfully showed that TG attenuated sepsis-induced myocardial dysfunction by inhibiting myocardial autophagy via silencing the Phosphatase and tensin homolog (PTEN) expression and acting on the AKT/mTOR pathway. The present findings supported that TG is a novel cardioprotective therapeutic target for sepsis induced myocardial dysfunction.


Assuntos
Cardiomiopatias/tratamento farmacológico , Cardiotônicos/farmacologia , Flavonas/farmacologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepse/complicações , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/efeitos dos fármacos , Cardiomiopatias/sangue , Cardiomiopatias/etiologia , Cardiotônicos/administração & dosagem , Ceco/lesões , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Flavonas/administração & dosagem , Glutationa/efeitos dos fármacos , Glutationa/metabolismo , Coração/efeitos dos fármacos , Ligadura/métodos , Masculino , Miocárdio/patologia , Miocárdio/ultraestrutura , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Punções/métodos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/efeitos dos fármacos , Sepse/metabolismo , Tirosina/análogos & derivados , Tirosina/efeitos dos fármacos
7.
Drug Discov Today ; 29(7): 104021, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750928

RESUMO

The FDA has approved many nucleic acid (NA)-based products. The presence of charges and biological barriers however affect stability and restrict widespread use. The electrostatic complexation of peptide with polyethylene glycol-nucleic acids (PEG-NAs) via nonreducible and reducible agents lead to three parts at one platform.. The reducible linkage made detachment of siRNA from PEG easy compared with a nonreducible linkage. A peptide spider produces a small hydrodynamic particle size, which can improve drug release and pharmacokinetics. Several examples of peptide spiders that enhance stability, protection and transfection efficiency are discussed. Moreover, this review also covers the challenges, future perspectives and unmet needs of peptide-PEG-NAs conjugates for NAs delivery.


Assuntos
Ácidos Nucleicos , Peptídeos , Humanos , Peptídeos/química , Peptídeos/administração & dosagem , Ácidos Nucleicos/administração & dosagem , Animais , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Aranhas , RNA Interferente Pequeno/administração & dosagem
8.
CNS Neurol Disord Drug Targets ; 23(4): 411-419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37157197

RESUMO

General anaesthetics (GA) have been in continuous clinical use for more than 170 years, with millions of young and elderly populations exposed to GA to relieve perioperative discomfort and carry out invasive examinations. Preclinical studies have shown that neonatal rodents with acute and chronic exposure to GA suffer from memory and learning deficits, likely due to an imbalance between excitatory and inhibitory neurotransmitters, which has been linked to neurodevelopmental disorders. However, the mechanisms behind anaesthesia-induced alterations in late postnatal mice have yet to be established. In this narrative review, we present the current state of knowledge on early life anaesthesia exposure-mediated alterations of genetic expression, focusing on insights gathered on propofol, ketamine, and isoflurane, as well as the relationship between network effects and subsequent biochemical changes that lead to long-term neurocognitive abnormalities. Our review provides strong evidence and a clear picture of anaesthetic agents' pathological events and associated transcriptional changes, which will provide new insights for researchers to elucidate the core ideas and gain an in-depth understanding of molecular and genetic mechanisms. These findings are also helpful in generating more evidence for understanding the exacerbated neuropathology, impaired cognition, and LTP due to acute and chronic exposure to anaesthetics, which will be beneficial for the prevention and treatment of many diseases, such as Alzheimer's disease. Given the many procedures in medical practice that require continuous or multiple exposures to anaesthetics, our review will provide great insight into the possible adverse impact of these substances on the human brain and cognition.


Assuntos
Anestesia , Anestésicos , Isoflurano , Propofol , Humanos , Camundongos , Animais , Idoso , Anestésicos/farmacologia , Isoflurano/farmacologia , Propofol/farmacologia , Genômica
9.
Curr Pharm Biotechnol ; 25(15): 1905-1914, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38310448

RESUMO

Erectile Dysfunction (ED) is a prevalent sexual health condition affecting a significant portion of the male population worldwide. The conventional therapeutic approaches for ED often involve the use of pharmaceutical agents targeting the phosphodiesterase-5 (PDE5) enzyme. Currently, treatment with PDE-5 inhibitors is the standard approach for ED, and four PDE-5 inhibitors, namely sildenafil, vardenafil, tadalafil, and avanafil, are in use. However, these pharmaceutical interventions may be associated with adverse effects and limitations. As a result, there has been a growing interest in exploring alternative and complementary treatment options for ED, such as nutraceuticals, which are bioactive compounds derived from natural sources. Nutraceuticals, which include vitamins, minerals, herbs, and other dietary supplements, have gained popularity for their potential health benefits. Certain nutraceuticals have demonstrated the ability to modulate various physiological pathways, including those involved in erectile function. A notable mechanism of action is the inhibition of the PDE5 enzyme, which plays a pivotal role in the regulation of cGMP levels. By inhibiting PDE5, nutraceuticals can promote the accumulation of cGMP, leading to enhanced penile blood flow and improved erectile function. A comprehensive analysis of the literature showcases various nutraceutical agents, including plant-derived compounds like flavonoids, polyphenols, and amino acids which have exhibited PDE5 inhibitory effects. Mechanistic insights into their action involve modulation of NO release, cGMP elevation, and relaxation of penile smooth muscles, all critical factors for achieving and sustaining erections. This review focuses on elucidating the role of nutraceuticals in treating erectile dysfunction through the inhibition of the PDE5 enzyme.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5 , Suplementos Nutricionais , Disfunção Erétil , Inibidores da Fosfodiesterase 5 , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/dietoterapia , Masculino , Humanos , Inibidores da Fosfodiesterase 5/uso terapêutico , Inibidores da Fosfodiesterase 5/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Animais
10.
Pathol Res Pract ; 253: 155037, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38160482

RESUMO

Ulcerative colitis (UC) is a persistent inflammatory condition affecting the colon's mucosal lining, leading to chronic bowel inflammation. Despite extensive research, the precise molecular mechanisms underlying UC pathogenesis remain elusive. NcRNAs form a category of functional RNA molecules devoid of protein-coding capacity. They have recently surfaced as pivotal modulators of gene expression and integral participants in various pathological processes, particularly those related to inflammatory disorders. The diverse classes of ncRNAs, encompassing miRNAs, circRNAs, and lncRNAs, have been implicated in UC. It highlights their involvement in key UC-related processes, such as immune cell activation, epithelial barrier integrity, and the production of pro-inflammatory mediators. ncRNAs have been identified as potential biomarkers for UC diagnosis and monitoring disease progression, offering promising avenues for personalized medicine. This approach may pave the way for novel, more specific treatments with reduced side effects, addressing the current limitations of conventional therapies. A comprehensive understanding of the interplay between ncRNAs and UC will advance our knowledge of the disease, potentially leading to more effective and personalized treatments for patients suffering from this debilitating condition. This review explores the pivotal role of ncRNAs in the context of UC, shedding light on their possible targets for diagnosis, prognosis, and therapeutic interventions.


Assuntos
Colite Ulcerativa , MicroRNAs , Humanos , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/genética , Colite Ulcerativa/terapia , MicroRNAs/genética , RNA não Traduzido/genética , Inflamação , Biomarcadores/metabolismo
11.
Exp Gerontol ; 188: 112389, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432575

RESUMO

Aging-related diseases (ARDs) are a major global health concern, and the development of effective therapies is urgently needed. Kaempferol, a flavonoid found in several plants, has emerged as a promising candidate for ameliorating ARDs. This comprehensive review examines Kaempferol's chemical properties, safety profile, and pharmacokinetics, and highlights its potential therapeutic utility against ARDs. Kaempferol's therapeutic potential is underpinned by its distinctive chemical structure, which confers antioxidative and anti-inflammatory properties. Kaempferol counteracts reactive oxygen species (ROS) and modulates crucial cellular pathways, thereby combating oxidative stress and inflammation, hallmarks of ARDs. Kaempferol's low toxicity and wide safety margins, as demonstrated by preclinical and clinical studies, further substantiate its therapeutic potential. Compelling evidence supports Kaempferol's substantial potential in addressing ARDs through several mechanisms, notably anti-inflammatory, antioxidant, and anti-apoptotic actions. Kaempferol exhibits a versatile neuroprotective effect by modulating various proinflammatory signaling pathways, including NF-kB, p38MAPK, AKT, and the ß-catenin cascade. Additionally, it hinders the formation and aggregation of beta-amyloid protein and regulates brain-derived neurotrophic factors. In terms of its anticancer potential, kaempferol acts through diverse pathways, inducing apoptosis, arresting the cell cycle at the G2/M phase, suppressing epithelial-mesenchymal transition (EMT)-related markers, and affecting the phosphoinositide 3-kinase/protein kinase B signaling pathways. Subsequent studies should focus on refining dosage regimens, exploring innovative delivery systems, and conducting comprehensive clinical trials to translate these findings into effective therapeutic applications.


Assuntos
Quempferóis , Síndrome do Desconforto Respiratório , Humanos , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Quempferóis/química , Fosfatidilinositol 3-Quinases , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Envelhecimento , Síndrome do Desconforto Respiratório/tratamento farmacológico
12.
Pathol Res Pract ; 254: 155121, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262269

RESUMO

Glioblastoma is a prevalent form of carcinoma that exhibits a greater incidence rate across diverse demographics globally. Despite extensive global efforts, GBM continues to be a highly lethal disease that is characterized by a grim prognosis. There is a wealth of evidence suggesting that the pathophysiology of GBM is associated with the dysregulation of numerous cellular and molecular processes. The etiology of GBM may involve various cellular and molecular pathways, including EGFR, PDCD4, NF-κB, MAPK, matrix metalloproteinases, STAT, and Akt. MicroRNAs, short non-coding RNA molecules, regulate gene expression and mRNA translation after transcription but before translation to exert control over a wide range of biological functions. Extensive research has consistently demonstrated the upregulation of miRNA-21 in glioma, indicating its involvement in diverse biological pathways that facilitate tumor cell survival. By explaining the intricate interplay between miR-21 and the regulation of apoptosis in GBM, this review has the potential to significantly enhance our comprehension of the illness and provide potential targets for therapeutic intervention.


Assuntos
Neoplasias Encefálicas , Glioblastoma , MicroRNAs , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , MicroRNAs/metabolismo , Apoptose/genética , Regulação Neoplásica da Expressão Gênica/genética , Proliferação de Células , Proteínas de Ligação a RNA/genética , Proteínas Reguladoras de Apoptose/metabolismo
13.
Pathol Res Pract ; 254: 155134, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277746

RESUMO

Prostate cancer (PCa) is an important worldwide medical concern, necessitating a greater understanding of the molecular processes driving its development. The Wnt/-catenin signaling cascade is established as a central player in PCa pathogenesis, and recent research emphasizes the critical involvement of non-coding RNAs (ncRNAs) in this scenario. This in-depth study seeks to give a thorough examination of the complex relationship between ncRNAs and the Wnt/ß-catenin system in PCa. NcRNAs, such as circular RNAs (circRNAs), long ncRNAs (lncRNAs), and microRNAs (miRNAs), have been recognized as essential regulators that modulate numerous facets of the Wnt/ß-catenin network. MiRNAs have been recognized as targeting vital elements of the process, either enhancing or inhibiting signaling, depending on their specific roles and targets. LncRNAs participate in fine-tuning the Wnt/ß-catenin network as a result of complicated interplay with both upstream and downstream elements. CircRNAs, despite being a relatively recent addition to the ncRNA family, have been implicated in PCa, influencing the Wnt/ß-catenin cascade through diverse mechanisms. This article encompasses recent advances in our comprehension of specific ncRNAs that participate in the Wnt/ß-catenin network, their functional roles, and clinical relevance in PCa. We investigate their use as screening and predictive indicators, and targets for treatment. Additionally, we delve into the interplay between Wnt/ß-catenin and other signaling networks in PCa and the role of ncRNAs within this complex network. As we unveil the intricate regulatory functions of ncRNAs in the Wnt/ß-catenin cascade in PCa, we gain valuable insights into the disease's pathogenesis. The implementation of these discoveries in practical applications holds promise for more precise diagnosis, prognosis, and targeted therapeutic approaches, ultimately enhancing the care of PCa patients. This comprehensive review underscores the evolving landscape of ncRNA research in PCa and the potential for innovative interventions in the battle against this formidable malignancy.


Assuntos
MicroRNAs , Neoplasias da Próstata , RNA Longo não Codificante , Masculino , Humanos , Via de Sinalização Wnt/genética , beta Catenina/metabolismo , RNA Longo não Codificante/genética , RNA Circular/genética , Neoplasias da Próstata/patologia , MicroRNAs/genética
14.
ACS Omega ; 8(14): 12761-12772, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37065087

RESUMO

Rosuvastatin (RST) is a poorly water-soluble drug responsible for limited in vivo dissolution and subsequently low oral systemic absorption (poor bioavailability). The mole fraction solubility values of RST in various ratios of binary mixtures "{PEG400 (1) + water (2)}" at 298.15 K were employed to investigate the preferential solvation (PS) of RST (3) by the binary components. Moreover, the GastroPlus program predicted the drug dissolution/absorption rates, plasma drug concentration, and compartmental regional drug absorbed from a conventional tablet as compared to the RST-loaded (PEG400 + water) mixture (at x 1 = 0.5) in healthy subjects (considering the fast condition). Fedors' method was adopted to estimate the values of molar volume (314.8 cm3·mol-1) and Hildebrand solubility parameter (28.08 MPa1/2) of RST. The results of inverse Kirkwood-Buff integrals showed the PS of RST by PEG400 as observed in all studied ratios of the binary mixture. The highest PS value (δx 1,3 = 1.65 × 10-2) for RST by PEG400 was attained at x 1 = 0.5. Finally, the GastroPlus program predicted the maximum dissolution rate [20 mg within 15 min as compared to pure RST (1.5 mg within 15 min)]. Moreover, the program predicted increased in vivo oral absorption (1.2 µg/mL) and enhanced regional absorption (95.3%) of RST from upper segments of the gastrointestinal tract for the RST-loaded PEG400 + water mixture in humans as compared to conventional tablets (87.5% as total regional absorption and 0.88 µg/mL as in vivo absorption). Hence, the present binary system ferrying RST can be a promising strategy to control systemic dyslipidemia after oral or subcutaneous administration.

15.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37765031

RESUMO

The ameliorative effect of ethanolic extract of M. oleifera (MOEE) leaves in combination with curcumin against seizures, cognitive impairment, and oxidative stress in the molecular docking of PTZ-induced kindled rats was performed to predict the potential phytochemical effects of MOEE and curcumin against epilepsy. The effect of pretreatment with leaves of M. oleifera ethanolic extracts (MOEE) (250 mg/kg and 500 mg/kg, orally), curcumin (200 mg/kg and 300 mg/kg, orally), valproic acid used as a standard (100 mg/kg), and the combined effect of MOEE (250 mg/kg) and curcumin (200 mg/kg) at a low dose on Pentylenetetrazole was used for (PTZ)-induced kindling For the development of kindling, individual Wistar rats (male) were injected with pentyletetrazole (40 mg/kg, i.p.) on every alternate day. Molecular docking was performed by the Auto Dock 4.2 tool to merge the ligand orientations in the binding cavity. From the RCSB website, the crystal structure of human glutathione reductase (PDB ID: 3DK9) was obtained. Curcumin and M. oleifera ethanolic extracts (MOEE) showed dose-dependent effects. The combined effects of MOEE and curcumin leaves significantly improved the seizure score and decreased the number of myoclonic jerks compared with a standard dose of valproic acid. PTZ kindling induced significant oxidative stress and cognitive impairment, which was reversed by pretreatment with MOEE and curcumin. Glutathione reductase (GR) is an enzyme that plays a key role in the cellular control of reactive oxygen species (ROS). Therefore, activating GR can uplift antioxidant properties, which leads to the inhibition of ROS-induced cell death in the brain. The combination of the ethanolic extract of M. oleifera (MOEE) leaves and curcumin has shown better results than any other combination for antiepileptic effects by virtue of antioxidant effects. As per the docking study, chlorogenic acid and quercetin treated with acombination of curcumin have much more potential.

16.
ACS Omega ; 8(30): 26837-26849, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37593245

RESUMO

In continuance of our investigation into the anticancer activity of oxadiazoles, we report here the preparation of 10 new 1,3,4-oxadiazole analogues using the scaffold hopping technique. We have prepared the oxadiazoles having a common pharmacophoric structure (oxadiazole linked aryl nucleus) as seen in the reported anticancer agents IMC-038525 (tubulin inhibitor), IMC-094332 (tubulin inhibitor), and FATB (isosteric replacement of the S of thiadiazole with the O of oxadiazole). All of the oxadiazole analogues were predicted for their absorption, distribution, metabolism, and excretion (ADME) profiles and toxicity studies. All of the compounds were found to follow Lipinski's rule of 5 with a safe toxicity profile (Class IV compound) against immunotoxicity, mutagenicity, and toxicity. All of the compounds were synthesized and characterized using spectral data, followed by their anticancer activity tested in a single-dose assay at 10 µM as reported by the National Cancer Institute (NCI US) Protocol against nearly 59 cancer cell lines obtained from nine panels, including non-small-cell lung, ovarian, breast, central nervous system (CNS), colon, leukemia, prostate, and cancer melanoma. N-(2,4-Dimethylphenyl)-5-(3,4,5-trifluorophenyl)-1,3,4-oxadiazol-2-amine (6h) displayed significant anticancer activity against SNB-19, OVCAR-8, and NCI-H40 with percent growth inhibitions (PGIs) of 86.61, 85.26, and 75.99 and moderate anticancer activity against HOP-92, SNB-75, ACHN, NCI/ADR-RES, 786-O, A549/ATCC, HCT-116, MDA-MB-231, and SF-295 with PGIs of 67.55, 65.46, 59.09, 59.02, 57.88, 56.88, 56.53, 56.4, and 51.88, respectively. The compound 6h also registered better anticancer activity than Imatinib against CNS, ovarian, renal, breast, prostate, and melanoma cancers with average PGIs of 56.18, 40.41, 36.36, 27.61, 22.61, and 10.33, respectively. Molecular docking against tubulin, one of the appealing cancer targets, demonstrated an efficient binding within the binding site of combretastatin A4. The ligand 6h (docking score = -8.144 kcal/mol) interacted π-cationically with the residue Lys352 (with the oxadiazole ring). Furthermore, molecular dynamic (MD) simulation studies in complex with the tubulin-combretastatin A4 protein and ligand 6h were performed to examine the dynamic stability and conformational behavior.

17.
Pathol Res Pract ; 249: 154736, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37579591

RESUMO

Breast cancer is a complex and diverse condition that disrupts multiple signaling pathways essential for cell proliferation, survival, and differentiation. Recently, the significant involvement of long-chain non-coding RNAs (lncRNAs) in controlling key signaling pathways associated with breast cancer development has been discovered. This review aims to explore the interaction between lncRNAs and various pathways, including the AKT/PI3K/mTOR, Wnt/ß-catenin, Notch, DNA damage response, TGF-ß, Hedgehog, and NF-κB signaling pathways, to gain a comprehensive understanding of their roles in breast cancer. The AKT/PI3K/mTOR pathway regulates cell growth, survival, and metabolic function. Recent data suggests that specific lncRNAs can influence the functioning of this pathway, acting as either oncogenes or tumor suppressors. Dysregulation of this pathway is commonly observed in breast cancer cases. Moreover, breast cancer development has been associated with other pathways such as Wnt/ß-catenin, Notch, TGF-ß, Hedgehog, and NF-κB. Emerging studies have identified lncRNAs that modulate breast cancer's growth, progression, and metastasis by interacting with these pathways. To advance the development of innovative diagnostic tools and targeted treatment options, it is crucial to comprehend the intricate relationship between lncRNAs and vital signaling pathways in breast cancer. By fully harnessing the therapeutic potential of lncRNAs, there is a possibility of developing more effective and personalized therapy choices for breast cancer patients. Further investigation is necessary to comprehensively understand the role of lncRNAs within breast cancer signaling pathways and fully exploit their therapeutic potential.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Humanos , Feminino , Animais , Neoplasias da Mama/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , beta Catenina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , NF-kappa B/metabolismo , Ouriços/genética , Ouriços/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regulação Neoplásica da Expressão Gênica/genética
18.
ACS Omega ; 8(31): 28233-28248, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576685

RESUMO

Nanoemulgel (NEG) pharmaceutical formulations are gaining popularity because of their ability to serve both as a nanoemulsion and as a gel. These products are well-known for their ease of use, spreadability, controlled release, and ability to hydrate dry skin. Natural essential oils have been shown to promote the cutaneous permeability of topical formulations, enhancing medication safety and efficacy. Herein, we developed NEG for the enhanced permeation of ketoconazole against candidiasis using clove oil (clove-oil-NEG) or eucalyptus oil (eucalyptus-oil-NEG), using the gelling agents carbopol 943 and hydroxypropyl methylcellulose (HPMC). We tested various excipients to increase the solubility of ketoconazole and formulate a nanoemulsion (NE). We measured the NE droplet particle size, shape, entrapment efficiency, and drug release. Furthermore, the physicochemical properties of the optimized nanoemulsion formulation were characterized by techniques such as Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) analysis. The NEs were loaded into gels to form NEGs. NEGs were characterized for drug content, homogeneity, rheology, spreadability, and antifungal activity against Candida albicans, both in vitro and in vivo. Optimized ketoconazole NEG preparations consisted of either 15% clove oil or 20% eucalyptus oil. Droplet sizes in the optimized NEs were <100 nm, and the polydispersity indexes were 0.24 and 0.26. The percentages of ketoconazole released after 24 h from the clove-oil-NEG and eucalyptus-oil-NEGs were 91 ± 4.5 and 89 ± 7%, respectively. Scanning electron microscopy (SEM) showed that the NEGs had a smooth, uniform, and consistent shape and internal structural organization. The drug contents in the clove-oil-NEG and eucalyptus-oil-NEG were 98.5 ± 2.2 and 98.8 ± 3.4%, respectively. Permeation values of ketoconazole from clove-oil-NEG and eucalyptus-oil-NEG were 117 ± 7 and 108.34 ± 6 µg cm-2, respectively. The ketoconazole NEG formulations also had higher levels of fungal growth inhibition than a marketed formulation. Finally, in vivo studies showed that the NEGs do not irritate the skin. Ketoconazole NEG with either 15% clove oil or 20% eucalyptus oil is stable with better efficacy than ketoconazole alone due to excellent dispersion, drug dissolution, and permeability and thus might be recommended for the effective and safe treatment of candidiasis.

19.
Gels ; 9(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37623126

RESUMO

Flavonoids are hydroxylated phenolic substances in vegetables, fruits, flowers, seeds, wine, tea, nuts, propolis, and honey. They belong to a versatile category of natural polyphenolic compounds. Their biological function depends on various factors such as their chemical structure, degree of hydroxylation, degree of polymerization conjugation, and substitutions. Flavonoids have gained considerable attention among researchers, as they show a wide range of pharmacological activities, including coronary heart disease prevention, antioxidative, hepatoprotective, anti-inflammatory, free-radical scavenging, anticancer, and anti-atherosclerotic activities. Plants synthesize flavonoid compounds in response to pathogen attacks, and these compounds exhibit potent antimicrobial (antibacterial, antifungal, and antiviral) activity against a wide range of pathogenic microorganisms. However, certain antibacterial flavonoids have the ability to selectively target the cell wall of bacteria and inhibit virulence factors, including biofilm formation. Moreover, some flavonoids are known to reverse antibiotic resistance and enhance the efficacy of existing antibiotic drugs. However, due to their poor solubility in water, flavonoids have limited oral bioavailability. They are quickly metabolized in the gastrointestinal region, which limits their ability to prevent and treat various disorders. The integration of flavonoids into nanomedicine constitutes a viable strategy for achieving efficient cutaneous delivery owing to their favorable encapsulation capacity and diminished toxicity. The utilization of nanoparticles or nanoformulations facilitates drug delivery by targeting the drug to the specific site of action and exhibits excellent physicochemical stability.

20.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37765117

RESUMO

Non-small-cell lung cancer (NSCLC) mortality and new case rates are both on the rise. Most patients have fewer treatment options accessible due to side effects from drugs and the emergence of drug resistance. Bedaquiline (BQ), a drug licensed by the FDA to treat tuberculosis (TB), has demonstrated highly effective anti-cancer properties in the past. However, it is difficult to transport the biological barriers because of their limited solubility in water. Our study developed a UPLC method whose calibration curves showed linearity in the range of 5 ng/mL to 500 ng/mL. The UPLC method was developed with a retention time of 1.42 and high accuracy and precision. Its LOQ and LOD were observed to be 10 ng/mL and 5 ng/mL, respectively, whereas in the formulation, capmul MCM C10, Poloxamer 188, and PL90G were selected as solid lipids, surfactants, and co-surfactants, respectively, in the development of SLN. To combat NSCLC, we developed solid lipid nanoparticles (SLNs) loaded with BQ, whereas BQ suspension is prepared by the trituration method using acacia powder, hydroxypropyl methylcellulose, polyvinyl acrylic acid, and BQ. The developed and optimized BQ-SLN3 has a particle size of 144 nm and a zeta potential of (-) 16.3 mV. whereas BQ-loaded SLN3 has observed entrapment efficiency (EE) and loading capacity (LC) of 92.05% and 13.33%, respectively. Further, BQ-loaded suspension revealed a particle size of 1180 nm, a PDI of 0.25, and a zeta potential of -0.0668. whereas the EE and LC of BQ-loaded suspension were revealed to be 88.89% and 11.43%, respectively. The BQ-SLN3 exhibited insignificant variation in particle size, homogeneous dispersion, zeta potential, EE, and LC and remained stable over 90 days of storage at 25 °C/60% RH, whereas at 40 °C/75% RH, BQ-SLN3 observed significant variation in the above-mentioned parameters and remained unstable over 90 days of storage. Meanwhile, the BQ suspension at both 25 °C (60% RH) and 40 °C (75% RH) was found to be stable up to 90 days. The optimized BQ-SLN3 and BQ-suspension were in vitro gastrointestinally stable at pH 1.2 and 6.8, respectively. The in vitro drug release of BQ-SLN3 showed 98.19% up to 12 h at pH 7.2 whereas BQ suspensions observed only 40% drug release up to 4 h at pH 7.2 and maximum drug release of >99% within 4 h at pH 4.0. The mathematical modeling of BQ-SLN3 followed first-order release kinetics followed by a non-Fickian diffusion mechanism. After 24 to 72 h, the IC50 value of BQ-SLN3 was 3.46-fold lower than that of the BQ suspension, whereas the blank SLN observed cell viability of 98.01% and an IC50 of 120 g/mL at the end of 72 h. The bioavailability and higher biodistribution of BQ-SLN3 in the lung tumor were also shown to be greater than those of the BQ suspension. The effects of BQ-SLN3 on antioxidant enzymes, including MDA, SOD, CAT, GSH, and GR, in the treated group were significantly improved and reached the level nearest to that of the control group of rats over the cancer group of rats and the BQ suspension-treated group of rats. Moreover, the pharmacodynamic activity resulted in greater tumor volume and tumor weight reduction by BQ-SLN3 over the BQ suspension-treated group. As far as we are aware, this is the first research to look at the potential of SLN as a repurposed oral drug delivery, and the results suggest that BQ-loaded SLN3 is a better approach for NSCLC due to its better action potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA