Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 199(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28289081

RESUMO

Light sensing in chemotrophic bacteria has been relatively recently ascertained. In the human pathogen Acinetobacter baumannii, light modulates motility, biofilm formation, and virulence through the blue-light-sensing-using flavin (BLUF) photoreceptor BlsA. In addition, light can induce a reduction in susceptibility to certain antibiotics, such as minocycline and tigecycline, in a photoreceptor-independent manner. In this work, we identified new traits whose expression levels are modulated by light in this pathogen, which comprise not only important determinants related to pathogenicity and antibiotic resistance but also metabolic pathways, which represents a novel concept for chemotrophic bacteria. Indeed, the phenylacetic acid catabolic pathway and trehalose biosynthesis were modulated by light, responses that completely depend on BlsA. We further show that tolerance to some antibiotics and modulation of antioxidant enzyme levels are also influenced by light, likely contributing to bacterial persistence in adverse environments. Also, we present evidence indicating that surfactant production is modulated by light. Finally, the expression of whole pathways and gene clusters, such as genes involved in lipid metabolism and genes encoding components of the type VI secretion system, as well as efflux pumps related to antibiotic resistance, was differentially induced by light. Overall, our results indicate that light modulates global features of the A. baumannii lifestyle.IMPORTANCE The discovery that nonphototrophic bacteria respond to light constituted a novel concept in microbiology. In this context, we demonstrated that light could modulate aspects related to bacterial virulence, persistence, and resistance to antibiotics in the human pathogen Acinetobacter baumannii In this work, we present the novel finding that light directly regulates metabolism in this chemotrophic bacterium. Insights into the mechanism show the involvement of the photoreceptor BlsA. In addition, tolerance to antibiotics and catalase levels are also influenced by light, likely contributing to bacterial persistence in adverse environments, as is the expression of the type VI secretion system and efflux pumps. Overall, a profound influence of light on the lifestyle of A. baumannii is suggested to occur.


Assuntos
Acinetobacter baumannii/fisiologia , Acinetobacter baumannii/efeitos da radiação , Luz , Redes e Vias Metabólicas/efeitos da radiação , Antioxidantes/metabolismo , Metabolismo dos Lipídeos/efeitos da radiação , Fenilacetatos/metabolismo , Tensoativos/metabolismo , Trealose/biossíntese , Sistemas de Secreção Tipo VI/efeitos da radiação
2.
Front Microbiol ; 10: 1375, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275288

RESUMO

In 2014, a novel species of Acinetobacter, strain A47, determined to be hospital-acquired was recovered from a single patient soft tissue sample following a traumatic accident. The complexity of the Acinetobacter genus has been established, and every year novel species are identified. However, specific features and virulence factors that allow members of this genus to be successful pathogens are not well understood. Utilizing both genomic and phenotypic approaches, we identified distinct features and potential virulence factors of the A47 strain to understand its pathobiology. In silico analyses confirmed the uniqueness of this strain and other comparative and sequence analyses were used to study the evolution of relevant features identified in this isolate. The A47 genome was further analyzed for genes associated with virulence and genes involved in type IV pili (T4P) biogenesis, hemolysis, type VI secretion system (T6SS), and novel antibiotic resistance determinants were identified. A47 exhibited natural transformation with both genomic and plasmid DNA. It was able to form biofilms on different surfaces, to cause hemolysis of sheep and rabbit erythrocytes, and to kill competitor bacteria. Additionally, surface structures with non-uniform length were visualized with scanning electron microscopy and proposed as pili-like structures. Furthermore, the A47 genome revealed the presence of two putative BLUF type photoreceptors, and phenotypic assays confirmed the modulation by light of different virulence traits. Taken together, these results provide insight into the pathobiology of A47, which exhibits multiple virulence factors, natural transformation, and the ability to sense and respond to light, which may contribute to the success of an A47 as a hospital dwelling pathogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA