Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 56(12): 3285-3288, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28194915

RESUMO

Ultralight cellular sponges offer a unique set of properties. We show here that solvent uptake by these sponges results in new gel-like materials, which we term spongy gels. The appearance of the spongy gels is very similar to classic organogels. Usually, organogels are formed by a bottom-up process. In contrast, the spongy gels are formed by a top-down approach that offers numerous advantages for the design of their properties, reproducibility, and stability. The sponges themselves represent the scaffold of a gel that could be filled with a solvent, and thereby form a mechanically stable gel-like material. The spongy gels are independent of a time-consuming or otherwise demanding in situ scaffold formation. As solvent evaporation from gels is a concern for various applications, we also studied solvent evaporation of wetting and non-wetting liquids dispersed in the sponge.

2.
J Am Chem Soc ; 134(44): 18157-60, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23082763

RESUMO

A route to fully miscible polyethylene (PE) nanocomposites has been established based on polymer-brush-coated nanoparticles. These nanoparticles can be mixed with PE at any ratio, with homogeneous dispersion, and without aggregation. This allowed a first systematic study of the thermomechanical properties of PE nanocomposites without interference from aggregation effects. We observe that the storage modulus in the semicrystalline state and the softening temperature increase significantly with increasing nanoparticle content, whereas the melt viscosity is unaltered by the presence of nanoparticles. We show that the complete miscibility with the semicrystalline polymer matrix and the improvement of thermomechanical properties in the solid state is caused by the PE-coated nanoparticles being nucleating agents for the crystallization of PE. This provides a general route to fully miscibility nanocomposites with semicrystalline polymers.

4.
Materials (Basel) ; 15(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35407806

RESUMO

Due to their lightweight potential and good eco-balance, thermoplastic hybrid composites with natural fiber reinforcement have long been used in the automotive industry. A good alternative to natural fibers is wood fibers, which have similar properties but are also a single-material solution using domestic raw materials. However, there has been hardly any research into wood fibers in thermoplastic back-injected hybrid composites. This article compares the bond strength of an injection molded rib from polypropylene (PP) and wood fibers to different non-wovens. The non-wovens consisted of wood fibers (spruce) or alternatively natural fibers (kenaf, hemp), both with a polypropylene matrix. Pull-off and instrumented puncture impact tests show that, given similar parameters, the natural and wood-fiber-hybrid composites exhibit very similar trends in bond strength. Further tests using viscosity measurements, microscopy, and computed tomography confirm the results. Wood-fiber-reinforced thermoplastic hybrid composites can thus compete with the natural fiber composites in terms of their mechanical behavior and therefore present a good alternative in technical semi-structural applications.

5.
Adv Sci (Weinh) ; 9(11): e2105701, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35187843

RESUMO

Due to their light-weight and cost-effectiveness, cellular thermoplastic foams are considered as important engineering materials. On the other hand, additive manufacturing or 3D printing is one of the emerging and fastest growing manufacturing technologies due to its advantages such as design freedom and tool-less production. Nowadays, 3D printing of polymer compounds is mostly limited to manufacturing of solid parts. In this context, a merged foaming and printing technology can introduce a great alternative for the currently used foam manufacturing technologies such as foam injection molding. This perspective review article tackles the attempts taken toward initiating this novel technology to simultaneously foam and print thermoplastics. After explaining the basics of polymer foaming and additive manufacturing, this article classifies different attempts that have been made toward generating foamed printed structures while highlighting their challenges. These attempts are clustered into 1) architected porous structures, 2) syntactic foaming, 3) post-foaming of printed parts, and eventually 4) printing of blowing agents saturated filaments. Among these, the latest approach is the most practical route although it has not been thoroughly studied yet. A filament free approach that can be introduced as a potential strategy to unlock the difficulties to produce printed foam structures is also proposed.


Assuntos
Impressão Tridimensional , Simbiose , Polímeros/química , Porosidade
7.
Materials (Basel) ; 15(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744170

RESUMO

Environmental stress cracking (ESC) is one of the most prominent failure mechanisms for polymer components. The high sensitivity of plastics in regard to environmental influences has always meant that plastics as materials have been viewed very critically in outdoor applications. Recently, the massive occurrence of microplastics in the environment means that questions about the long-term stability of plastic parts and the studies of plastic fragmentation are of great scientific interest. ESC behavior also plays an important role in connection with the formation of microplastics. In this work, the influence of two different sample wetting methods on ESC behavior was investigated. In case A, the sample was in situ wetted with the medium during the measurement by using a sponge. In case B, the sample was wetted by storage in the medium prior to measurement. Different stress cracking agents (SCA) were examined for polymethylmethacrylate (PMMA). Fracture-mechanical fatigue crack propagation (FCP) tests were carried out to quantitatively determine the sensitivity to ESC. Correlations between the absorption behavior and the ESC behavior of the SCA and the resulting morphological phenomena were established. Depending on the wetting method, significant differences in FCP were observed. The in situ wetting of the samples (case A) during the FCP measurement with ethylene glycol (EG) and with deionized water (DI) led to a significant shift in the crack propagation curves to higher ∆K-compared to the PMMA reference. In the case of n-heptane (NH), a more brittle crack propagation behavior was observed due to the chemical interaction with PMMA. The previously immersed samples (case B) give different results. Storage in NH and EG showed no influence on the crack propagation behavior. Samples immersed in DI showed a completely different course of crack growth. At a certain load, a sudden deceleration of the crack propagation and thus a horizontal curve could be seen. Above a certain ∆K value, crack growth began again. Depending on the immersion time (14, 30, or 60 days), this so-called stepped behavior shifted to lower da/dN values.

8.
Materials (Basel) ; 15(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35744266

RESUMO

Expanded polymeric beads offer the advantage of being able to produce parts with complex geometries through a consolidation process. However, established polymeric beads are made of thermoplastics, deform and melt beyond their temperature services. In this manuscript, a new technique is proposed to fabricate expandable epoxy beads (EEBs), then expand and fuse them to produce epoxy particle foams (EPFs). This technique is called solid-state carbamate foaming technique. For production of EEBs, a mixture of epoxy, carbamate and hardener is prepared and poured into a 10 mL syringe. The mixture is manually extruded into 60 °C water to obtain a cylindric shape. The extrudate is then further cured to obtain an epoxy oligomer behaving rheological tan delta 3 and 2 at 60 °C. The extrudate is cut into pellets to obtain EEBs. The EEBs are then loaded into an aluminum mold and placed in an oven at 160 °C to expand, fuse to obtain EPFs of 212 kg/m3 and 258 kg/m3. The obtained EPFs provide a Tg of 150-154 °C. The fusion boundaries in EPFs are well formed. Thus, the produced EPFs exhibit a compressive modulus of 50-70 MPa, with a torsion storage modulus at 30 °C of 34-56 MPa.

9.
Sci Total Environ ; 826: 154035, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35217061

RESUMO

When plastics enter the environment, they are exposed to abiotic and biotic impacts, resulting in degradation and the formation of micro- and nanoplastic. Microplastic is ubiquitous in every environmental compartment. Nevertheless, the underlying degradation processes are not yet fully understood. Here, we studied the abiotic degradation of commonly used semi-crystalline, low-density polyethylene (LDPE) in a long-term accelerated weathering experiment combining several macro- and microscopic methods. Based on our observations, the degradation of LDPE proceeds in three stages. Initially, LDPE objects are prone to abrasion, followed by a period of surface cracking. A large number of secondary particles with a high degree of crystallinity are formed, with sizes down to the nanometer scale. These particles consist of highly polar oligomers leading to agglomeration in the final stage. We therefore suppose that weathered microplastic and nanoplastic particles will attach to colloidal environmental matter. This offers an explanation for the absence of free nanoplastic particles in natural samples.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Polietileno , Poluentes Químicos da Água/análise , Tempo (Meteorologia)
10.
Polymers (Basel) ; 14(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35012096

RESUMO

Reactive compounding of terminally phenolic OH-functionalized polycarbonate (PC) with epoxy-functionalized polymethylmethacrylate (PMMA) prepared by copolymerization with glycidyl methacrylate was investigated. It was spectroscopically demonstrated that a PC/PMMA copolymer was formed during the melt reaction of the functional groups. Zirconium acetylacetonate could catalytically accelerate this reaction. Correlations of the phenomenological (optical and mechanical) properties with the molecular level and mesoscopic (morphological) structure were discussed. By the investigated reactive compounding process, transparent PC/PMMA blends with two-phase morphologies were obtained in a continuous twin-screw extruder, which, for the first time, combined the high transmission of visible light with excellent mechanical performance (e.g., synergistically improved tensile and flexural strength and high scratch resistance). The transparency strongly depended on (a) the degree of functionalization in both PC and PMMA, (b) the presence of the catalyst, and (c) the residence time of the compounding process. The in-situ-formed PC/PMMA copolymer influenced the observed macroscopic properties by (a) a decrease in the interphase tension, leading to improved and stabilized phase dispersion, (b) the formation of a continuous gradient of the polymer composition and thus of the optical refractive indices in a diffuse mesoscopic interphase layer separating the PC and PMMA phases, and (c) an increase in the phase adhesion between PC and PMMA due to mechanical polymer chain entanglement in this interphase.

11.
Polymers (Basel) ; 13(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34451160

RESUMO

Polylactide (PLA) is one of the most important bioplastics worldwide and thus represents a good potential substitute for bead foams made of the fossil-based Polystyrene (PS). However, foaming of PLA comes with a few challenges. One disadvantage of commercially available PLA is its low melt strength and elongation properties, which play an important role in foaming. As a polyester, PLA is also very sensitive to thermal and hydrolytic degradation. Possibilities to overcome these disadvantages can be found in literature, but improving the properties for foaming of PLA as well as the degradation behavior during foaming have not been investigated yet. In this study, reactive extrusion on a twin-screw extruder is used to modify PLA in order to increase the melt strength and to protect it against thermal degradation and hydrolysis. PLA foams are produced in an already known process from the literature and the influence of the modifiers on the properties is estimated. The results show that it is possible to enhance the foaming properties of PLA and to protect it against hydrolysis at the same time.

12.
Polymers (Basel) ; 13(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34372043

RESUMO

Foaming an epoxy is challenging because the process involves the curing reaction of epoxy and hardener (from monomer to oligomer, to a gel and a final three-dimensional crosslinked network) and the loading of gas phase into the epoxy phase to develop the cellular structure. The latter process needs to be carried out at the optimum curing stage of epoxy to avoid cell coalescence and to allow expansion. The environmental concern regarding the usage of chemical blowing agent also limits the development of epoxy foams. To surmount these challenges, this study proposes a solid-state CO2 foaming of epoxy. Firstly, the resin mixture of diglycidylether of bisphenol-A (DGEBA) epoxy and polyamide hardener is pre-cured to achieve various solid-state sheets (preEs) of specific storage moduli. Secondly, these preEs undergo CO2 absorption using an autoclave. Thirdly, CO2 absorbed preEs are allowed to free-foam/expand in a conventional oven at various temperatures; lastly, the epoxy foams are post-cured. PreE has a distinctive behavior once being heated; the storage modulus is reduced and then increases due to further curing. Epoxy foams in a broad range of densities could be fabricated. PreE with a storage modulus of 4 × 104-1.5 × 105 Pa at 30 °C could be foamed to densities of 0.32-0.45 g/cm3. The cell morphologies were revealed to be star polygon shaped, spherical and irregularly shaped. The research proved that the solid-state CO2-foaming technique can be used to fabricate epoxy foams with controlled density.

13.
Materials (Basel) ; 14(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34576397

RESUMO

This study focuses on the effect of part geometry and infill degrees on effective mechanical properties of extrusion additively manufactured stainless steel 316L parts produced with BASF's Ultrafuse 316LX filament. Knowledge about correlations between infill degrees, mechanical properties and dimensional deviations are essential to enhance the part performance and further establish efficient methods for the product development for lightweight metal engineering applications. To investigate the effective Young's modulus, yield strength and bending stress, standard testing methods for tensile testing and bending testing were used. For evaluating the dimensional accuracy, the tensile and bending specimens were measured before and after sintering to analyze anisotropic shrinkage effects and dimensional deviations linked to the infill structure. The results showed that dimensions larger than 10 mm have minor geometrical deviations and that the effective Young's modulus varied in the range of 176%. These findings provide a more profound understanding of the process and its capabilities and enhance the product development process for metal extrusion-based additive manufacturing.

14.
Polymers (Basel) ; 13(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672028

RESUMO

Expandable polystyrene (EPS) and expanded polypropylene (EPP) dominate the bead foam market. As the low thermal performance of EPS and EPP limits application at elevated temperatures novel solutions such as expanded polybutylene terephthalate (E-PBT) are gaining importance. To produce parts, individual beads are typically molded by hot steam. While molding of EPP is well-understood and related to two distinct melting temperatures, the mechanisms of E-PBT are different. E-PBT shows only one melting peak and can surprisingly only be molded when adding chain extender (CE). This publication therefore aims to understand the impact of thermal properties of E-PBT on its molding behavior. Detailed differential scanning calorimetry was performed on neat and chain extended E-PBT. The crystallinity of the outer layer and center of the bead was similar. Thus, a former hypothesis that a completely amorphous bead layer enables molding, was discarded. However, the incorporation of CE remarkably reduces the crystallization and re-crystallization rate. As a consequence, the time available for interdiffusion of chains across neighboring beads increases and facilitates crystallization across the bead interface. For E-PBT bead foams, it is concluded that sufficient time for polymer interdiffusion during molding is crucial and requires adjusted crystallization kinetics.

15.
Polymers (Basel) ; 13(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808179

RESUMO

Polystyrene foams have become more and more important owing to their lightweight potential and their insulation properties. Progress in this field is expected to be realized by foams featuring a microcellular morphology. However, large-scale processing of low-density foams with a closed-cell structure and volume expansion ratio of larger than 10, exhibiting a homogenous morphology with a mean cell size of approximately 10 µm, remains challenging. Here, we report on a series of 4,4'-diphenylmethane substituted bisamides, which we refer to as kinked bisamides, acting as efficient supramolecular foam cell nucleating agents for polystyrene. Self-assembly experiments from solution showed that these bisamides form supramolecular fibrillary or ribbon-like nanoobjects. These kinked bisamides can be dissolved at elevated temperatures in a large concentration range, forming dispersed nano-objects upon cooling. Batch foaming experiments using 1.0 wt.% of a selected kinked bisamide revealed that the mean cell size can be as low as 3.5 µm. To demonstrate the applicability of kinked bisamides in a high-throughput continuous foam process, we performed foam extrusion. Using 0.5 wt.% of a kinked bisamide yielded polymer foams with a foam density of 71 kg/m3 and a homogeneous microcellular morphology with cell sizes of ≈10 µm, which is two orders of magnitude lower compared to the neat polystyrene reference foam with a comparable foam density.

16.
Polymers (Basel) ; 13(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34833184

RESUMO

With macroscopic litter and its degradation into secondary microplastic as a major source of environmental pollution, one key challenge is understanding the pathways from macro- to microplastic by abiotic and biotic environmental impact. So far, little is known about the impact of biota on material properties. This study focuses on recycled, bottle-grade poly(ethylene terephthalate) (r-PET) and the degrading enzyme PETase from Ideonella sakaiensis. Compact tension (CT) specimens were incubated in an enzymatic solution and thermally and mechanically characterized. A time-dependent study up to 96 h revealed the formation of steadily growing colloidal structures. After 96 h incubation, high amounts of BHET dimer were found in a near-surface layer, affecting crack propagation and leading to faster material failure. The results of this pilot study show that enzymatic activity accelerates embrittlement and favors fragmentation. We conclude that PET-degrading enzymes must be viewed as a potentially relevant acceleration factor in macroplastic degradation.

17.
Polymers (Basel) ; 13(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34833192

RESUMO

In transport sectors such as aviation, automotive and railway, materials combining a high lightweight potential with high flame retardant properties are in demand. Polymeric foams are suitable materials as they are lightweight, but often have high flammability. This study focuses on the influence of different flame retardants on the burning behavior of Novolac based epoxy foams using Isophorone Diamine carbamate (B-IPDA) as dual functional curing and blowing agent. The flame retardant properties and possible modifications of these foams are systematically investigated. Multiple flame retardants, representing different flame retardant mechanisms, are used and the effects on the burning behavior as well as mechanical and thermal properties are evaluated. Ammonium polyphosphate (APP), used with a filler degree of 20 wt.% or higher, functions as the best performing flame retardant in this study.

18.
Polymers (Basel) ; 13(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924218

RESUMO

The use of amine-based carbamates with their dual function, acting as amine curing agents and CO2 blowing agents after their decomposition without by-products, are promising for ecofriendly epoxy foams as high-performance materials. However, controlling cell morphology requires a proper adjustment of the viscosity at the foaming step. The viscosity is altered not only by blending neat amine and its derived carbamate at a fixed pre-curing time, but also by changing the pre-curing time at a fixed blend ratio. Within this study, diglycidylether of bisphenol A (DGEBA) epoxy resin is mixed with different blend ratios of isophorone diamine (IPDA) and its derived carbamate (B-IPDA). The systems are characterized by DSC and rheology experiments to identify the pre-curing effects on the derived epoxy foams. Epoxy foams at a blend ratio of 30/70w IPDA/B-IPDA showed the best foam morphology and an optimum Tg compared to other blend ratios. Furthermore, it was found that both pre-curing times, 2 h and 3 h, for the 30/70w IPDA/B-IPDA system reveal a more homogeneous cell structure. The study proves that the blending of neat amine and carbamate is beneficial for the foaming performance of carbamate systems.

19.
Polymers (Basel) ; 13(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801511

RESUMO

The effect of plasma treatment of the multi-walled carbon nanotube (MWCNT) surface on the fracture toughness of an aerospace grade epoxy resin and its unidirectional (UD) carbon fiber prepreg laminates has attracted scientific interest. A prepreg route eliminates the possible risk of carbon nanotube filtration by unidirectional carbon fibers. X-ray photoelectron spectroscopy results suggested that oxygen atom concentration at the nanotube surface was increased from 0.9% to 3.7% after plasma modification of the carbon nanotubes. A low number (up to 0.5 wt.%) of MWCNTs was added to epoxy resin and their carbon fiber prepreg laminates. Transmission electron micrographs revealed that the plasma treatment resulted in a better dispersion and distribution of MWCNTs in the epoxy resin. Plasma-treated MWCNTs resulted in a more pronounced resistance to the crack propagation of epoxy resin. During the production of the reference and nanotube-modified prepregs, a comparable prepreg quality was achieved. Neat nanotubes agglomerated strongly in the resin-rich regions of laminates lowering the interlaminar fracture toughness under mode I and mode II loading. However, plasma-treated nanotubes were found mostly as single particles in the resin-rich regions of laminates promoting higher energy dissipation during crack propagation via a CNT pull-out mechanism.

20.
Macromol Rapid Commun ; 31(7): 634-9, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21590953

RESUMO

We reveal that a beam of low-energy electrons (18 eV) can directly trigger long-range molecular ordering of an amorphous, semi-flexible oligomer in a few minutes without the prerequisite of pre-orientation. A strong endothermic transition was detected with a micro-thermal analyzer on the areas that had been exposed to the electron irradiation while the areas that were shielded from the irradiation by a protective mask remained amorphous as usual. This result suggests that long-range molecular ordering only develops in the area of the oligomer film under electron irradiation. This is the first-time effort to use electron irradiation to control the long-range ordering of an amorphous organic thin film above the glass transition temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA