Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Genet ; 63(2): 215-227, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27387518

RESUMO

Agrobacterium-mediated gene transfer (AMT) is extensively employed as a tool in fungal functional genomics and accordingly, in previous studies we used AMT on a dikaryotic strain of the ectomycorrhizal basidiomycete Laccaria bicolor. The interest in this fungus derives from its capacity to establish a symbiosis with tree roots, thereby playing a major role in nutrient cycling of forest ecosystems. The ectomycorrhizal symbiosis is a highly complex interaction involving many genes from both partners. To advance in the functional characterization of fungal genes, AMT was used on a monokaryotic L. bicolor. A collection of over 1200 transgenic strains was produced, of which 200 randomly selected strains were analyzed for their genomic T-DNA insertion patterns. By means of insertional mutagenesis, a number of transgenic strains were obtained displaying differential growth features. Moreover, mating with a compatible strain resulted in dikaryons that retained altered phenotypic features of the transgenic monokaryon. The analysis of the T-DNA integration pattern revealed mostly similar results to those reported in earlier studies, confirming the usefulness of AMT on different genetic backgrounds of L. bicolor. Taken together, our studies display the great versatility and potentiality of AMT as a tool for the genetic characterization of L. bicolor.


Assuntos
Agrobacterium/genética , Laccaria/genética , Mutagênese Insercional , Micorrizas/genética , Sequência de Bases , Sítios de Ligação/genética , Southern Blotting , DNA Bacteriano/genética , DNA Fúngico/genética , Proteínas Fúngicas/genética , Genoma Fúngico/genética , Análise de Sequência de DNA , Simbiose , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA