Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5241, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640699

RESUMO

Human APOBEC3 (A3) cytidine deaminases are antiviral factors that are particularly potent against retroviruses. As a countermeasure, HIV-1 uses a viral infectivity factor (Vif) to target specific human A3s for proteasomal degradation. Vif recruits cellular transcription cofactor CBF-ß and Cullin-5 (CUL5) RING E3 ubiquitin ligase to bind different A3s distinctively, but how this is accomplished remains unclear in the absence of the atomic structure of the complex. Here, we present the cryo-EM structures of HIV-1 Vif in complex with human A3H, CBF-ß and components of CUL5 ubiquitin ligase (CUL5, ELOB, and ELOC). Vif nucleates the entire complex by directly binding four human proteins, A3H, CBF-ß, CUL5, and ELOC. The structures reveal a large interface area between A3H and Vif, primarily mediated by an α-helical side of A3H and a five-stranded ß-sheet of Vif. This A3H-Vif interface unveils the basis for sensitivity-modulating polymorphism of both proteins, including a previously reported gain-of-function mutation in Vif isolated from HIV/AIDS patients. Our structural and functional results provide insights into the remarkable interplay between HIV and humans and would inform development efforts for anti-HIV therapeutics.


Assuntos
Síndrome da Imunodeficiência Adquirida , HIV-1 , Humanos , Ubiquitina-Proteína Ligases/genética , Antivirais , Citidina Desaminase , Proteínas Culina/genética , Aminoidrolases
2.
Sci Adv ; 9(1): eade3168, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598981

RESUMO

Human APOBEC3G (A3G) is a virus restriction factor that inhibits HIV-1 replication and triggers lethal hypermutation on viral reverse transcripts. HIV-1 viral infectivity factor (Vif) breaches this host A3G immunity by hijacking a cellular E3 ubiquitin ligase complex to target A3G for ubiquitination and degradation. The molecular mechanism of A3G targeting by Vif-E3 ligase is unknown, limiting the antiviral efforts targeting this host-pathogen interaction crucial for HIV-1 infection. Here, we report the cryo-electron microscopy structures of A3G bound to HIV-1 Vif in complex with T cell transcription cofactor CBF-ß and multiple components of the Cullin-5 RING E3 ubiquitin ligase. The structures reveal unexpected RNA-mediated interactions of Vif with A3G primarily through A3G's noncatalytic domain, while A3G's catalytic domain is poised for ubiquitin transfer. These structures elucidate the molecular mechanism by which HIV-1 Vif hijacks the host ubiquitin ligase to specifically target A3G to establish infection and offer structural information for the rational development of antiretroviral therapeutics.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , HIV-1/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo , Microscopia Crioeletrônica , Ubiquitina/metabolismo , Ligação Proteica , Desaminase APOBEC-3G/genética , Desaminase APOBEC-3G/metabolismo
3.
Science ; 381(6653): eadg4725, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410820

RESUMO

In Trypanosoma brucei, the editosome, composed of RNA-editing substrate-binding complex (RESC) and RNA-editing catalytic complex (RECC), orchestrates guide RNA (gRNA)-programmed editing to recode cryptic mitochondrial transcripts into messenger RNAs (mRNAs). The mechanism of information transfer from gRNA to mRNA is unclear owing to a lack of high-resolution structures for these complexes. With cryo-electron microscopy and functional studies, we have captured gRNA-stabilizing RESC-A and gRNA-mRNA-binding RESC-B and RESC-C particles. RESC-A sequesters gRNA termini, thus promoting hairpin formation and blocking mRNA access. The conversion of RESC-A into RESC-B or -C unfolds gRNA and allows mRNA selection. The ensuing gRNA-mRNA duplex protrudes from RESC-B, likely exposing editing sites to RECC-catalyzed cleavage, uridine insertion or deletion, and ligation. Our work reveals a remodeling event facilitating gRNA-mRNA hybridization and assembly of a macromolecular substrate for the editosome's catalytic modality.


Assuntos
Edição de RNA , Estabilidade de RNA , RNA Guia de Cinetoplastídeos , RNA Mensageiro , RNA de Protozoário , Trypanosoma brucei brucei , Microscopia Crioeletrônica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Guia de Cinetoplastídeos/química , RNA Mensageiro/química , RNA Mensageiro/genética , Trypanosoma brucei brucei/genética , RNA de Protozoário/química , RNA de Protozoário/genética
4.
Nat Commun ; 12(1): 4176, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234134

RESUMO

Mammalian reovirus (MRV) is the prototypical member of genus Orthoreovirus of family Reoviridae. However, lacking high-resolution structures of its RNA polymerase cofactor µ2 and infectious particle, limits understanding of molecular interactions among proteins and RNA, and their contributions to virion assembly and RNA transcription. Here, we report the 3.3 Å-resolution asymmetric reconstruction of transcribing MRV and in situ atomic models of its capsid proteins, the asymmetrically attached RNA-dependent RNA polymerase (RdRp) λ3, and RdRp-bound nucleoside triphosphatase µ2 with a unique RNA-binding domain. We reveal molecular interactions among virion proteins and genomic and messenger RNA. Polymerase complexes in three Spinoreovirinae subfamily members are organized with different pseudo-D3d symmetries to engage their highly diversified genomes. The above interactions and those between symmetry-mismatched receptor-binding σ1 trimers and RNA-capping λ2 pentamers balance competing needs of capsid assembly, external protein removal, and allosteric triggering of endogenous RNA transcription, before, during and after infection, respectively.


Assuntos
Proteínas do Capsídeo/metabolismo , Nucleosídeo-Trifosfatase/metabolismo , Orthoreovirus/ultraestrutura , RNA Viral/metabolismo , Fatores de Transcrição/metabolismo , Regulação Alostérica , Animais , Proteínas do Capsídeo/ultraestrutura , Linhagem Celular , Microscopia Crioeletrônica , Regulação Viral da Expressão Gênica , Genoma Viral , Macaca mulatta , Nucleosídeo-Trifosfatase/ultraestrutura , Orthoreovirus/genética , Orthoreovirus/metabolismo , Multimerização Proteica , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/ultraestrutura , RNA Mensageiro/metabolismo , RNA Viral/ultraestrutura , RNA Polimerase Dependente de RNA/metabolismo , Fatores de Transcrição/ultraestrutura , Ativação Transcricional , Montagem de Vírus/genética
5.
Nat Commun ; 10(1): 5346, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767868

RESUMO

Human herpesvirus 6B (HHV-6B) belongs to the ß-herpesvirus subfamily of the Herpesviridae. To understand capsid assembly and capsid-tegument interactions, here we report atomic structures of HHV-6B capsid and capsid-associated tegument complex (CATC) obtained by cryoEM and sub-particle reconstruction. Compared to other ß-herpesviruses, HHV-6B exhibits high similarity in capsid structure but organizational differences in its CATC (pU11 tetramer). 180 "VΛ"-shaped CATCs are observed in HHV-6B, distinguishing from the 255 "Λ"-shaped dimeric CATCs observed in murine cytomegalovirus and the 310 "Δ"-shaped CATCs in human cytomegalovirus. This trend in CATC quantity correlates with the increasing genomes sizes of these ß-herpesviruses. Incompatible distances revealed by the atomic structures rationalize the lack of CATC's binding to triplexes Ta, Tc, and Tf in HHV-6B. Our results offer insights into HHV-6B capsid assembly and the roles of its tegument proteins, including not only the ß-herpesvirus-specific pU11 and pU14, but also those conserved across all subfamilies of Herpesviridae.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Herpesvirus Humano 6/metabolismo , Proteínas da Matriz Viral/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Genoma Viral/genética , Herpesvirus Humano 6/genética , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Infecções por Roseolovirus/virologia , Proteínas da Matriz Viral/genética
6.
Front Mol Biosci ; 4: 17, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28396859

RESUMO

Centrosomal P4.1-associated protein (CPAP) is a cell cycle regulated protein fundamental for centrosome assembly and centriole elongation. In humans, the region between residues 897-1338 of CPAP mediates interactions with other proteins and includes a homodimerization domain. CPAP mutations cause primary autosomal recessive microcephaly and Seckel syndrome. Despite of the biological/clinical relevance of CPAP, its mechanistic behavior remains unclear and its C-terminus (the G-box/TCP domain) is the only part whose structure has been solved. This situation is perhaps due in part to the challenges that represent obtaining the protein in a soluble, homogeneous state for structural studies. Our work constitutes a systematic structural analysis on multiple oligomers of HsCPAP897-1338, using single-particle electron microscopy (EM) of negatively stained (NS) samples. Based on image classification into clearly different regular 3D maps (putatively corresponding to dimers and tetramers) and direct observation of individual images representing other complexes of HsCPAP897-1338 (i.e., putative flexible monomers and higher-order multimers), we report a dynamic oligomeric behavior of this protein, where different homo-oligomers coexist in variable proportions. We propose that dimerization of the putative homodimer forms a putative tetramer which could be the structural unit for the scaffold that either tethers the pericentriolar material to centrioles or promotes procentriole elongation. A coarse fitting of atomic models into the NS 3D maps at resolutions around 20 Å is performed only to complement our experimental data, allowing us to hypothesize on the oligomeric composition of the different complexes. In this way, the current EM work represents an initial step toward the structural characterization of different oligomers of CPAP, suggesting further insights to understand how this protein works, contributing to the elucidation of control mechanisms for centriole biogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA