Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 123(1): 445-490, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36503233

RESUMO

Metal-organic frameworks (MOFs) have been frequently used as photocatalysts for the hydrogen evolution reaction (HER) using sacrificial agents with UV-vis or visible light irradiation. The aim of the present review is to summarize the use of MOFs as solar-driven photocatalysts targeting to overcome the current efficiency limitations in overall water splitting (OWS). Initially, the fundamentals of the photocatalytic OWS under solar irradiation are presented. Then, the different strategies that can be implemented on MOFs to adapt them for solar photocatalysis for OWS are discussed in detail. Later, the most active MOFs reported until now for the solar-driven HER and/or oxygen evolution reaction (OER) are critically commented. These studies are taken as precedents for the discussion of the existing studies on the use of MOFs as photocatalysts for the OWS under visible or sunlight irradiation. The requirements to be met to use MOFs at large scale for the solar-driven OWS are also discussed. The last section of this review provides a summary of the current state of the field and comments on future prospects that could bring MOFs closer to commercial application.


Assuntos
Estruturas Metalorgânicas , Luz Solar , Água , Processos Fotoquímicos , Luz
2.
Chemistry ; 29(1): e202202625, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36152311

RESUMO

Hydrogenation of multiple bonds are among the most general and important organic reactions. Typical heterogeneous catalysts are based on transition metal nanoparticles, including noble metals. Data are presented here showing that metal nodes of MIL-101(Cr) and UiO-66 in the absence of occluded metal nanoparticles can promote hydrogenation of polarized X=Y double bonds of nitro and carbonyl groups. The catalytic activity is a function of the composition of the metal node and the organic linker. It is proposed that the reaction mechanism is based on the operation of frustrated Lewis acid/base pairs.

3.
Chemphyschem ; 22(9): 842-848, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33719121

RESUMO

Solid-state photovoltaic cells based on robust metal-organic frameworks (MOFs), MIL-125(Ti), MIL-125(Ti)-NH2 , UiO-67, Ru(bpy)2 -UiO-67, (bpy 2,2'-bipyridine) as active components and spiro-MeOTAD (MeOTAD 2,2',7,7'-tetrakis[N,N-di(p-methoxyphenyl)amino]-9,9'-spirobifluorene) as hole transporting layer have been prepared., The photovoltaic response of this material increases in the presence of bathochromic -NH2 groups on the linker or Ru (II) polypyridyl complexes light harvester. These results show that the strategies typically employed in photocatalysis to enhance the photocatalytic activity of MOFs can also be applied in the field of photovoltaic devices.

4.
Org Biomol Chem ; 19(4): 794-800, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33043920

RESUMO

This work reports the reduction of 4-nitrophenol to 4-aminophenol using UiO-66(Zr) as a bifunctional photocatalyst and hydrogenation catalyst using methanol as the hydrogen source. In particular, a series of UiO-66(Zr)-X (X: NH2, NO2 and H) and MIL-125(Ti)-NH2 catalysts have been screened as bifunctional catalysts for this process. UiO-66(Zr)-NH2 was found to be the most active material to promote light-assisted nitro hydrogenation under both UV-Vis and simulated sunlight irradiation. The tandem reaction occurs via hydrogen generation from a water/methanol mixture in the first step and, then, reduction of 4-nitrophenol to 4-aminophenol. UiO-66(Zr)-NH2 acts as a truly heterogeneous catalyst and can be reused several times without significant loss of activity, maintaining its crystallinity. This work shows the possibility of using MOFs as solar-driven bifunctional catalysts to promote the hydrogenation of organic compounds using methanol as the hydrogen source.

5.
Chemistry ; 26(67): 15682-15689, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33107125

RESUMO

Defect engineering in metal-organic frameworks is commonly performed by using thermal or chemical treatments. Herein we report that oxygen plasma treatment generates structural defects on MIL-125(Ti)-NH2 , leading to an increase in its photocatalytic activity. Characterization data indicate that plasma-treated materials retain most of their initial crystallinity, while exhibiting somewhat lower surface area and pore volume. XPS and FT-IR spectroscopy reveal that oxygen plasma induces MIL-125(Ti)-NH2 partial terephthalate decarboxylation and an increase in the Ti-OH population. Thermogravimetric analyses confirm the generation of structural defects by oxygen plasma and allowed an estimation of the resulting experimental formula of the treated MIL-125(Ti)-NH2 solids. SEM analyses show that oxygen plasma treatment of MIL-125(Ti)-NH2 gradually decreases its particle size. Importantly, diffuse reflectance UV/Vis spectroscopy and valence band measurements demonstrate that oxygen plasma treatment alters the MIL-125(Ti)-NH2 band gap and, more significantly, the alignment of highest occupied and lowest unoccupied crystal orbitals. An optimal oxygen plasma treatment to achieve the highest efficiency in water splitting with or without methanol as sacrificial electron donor under UV/Vis or simulated sunlight was determined. The optimized plasma-treated MIL-125(Ti)-NH2 photocatalyst acts as a truly heterogeneous photocatalyst and retains most of its initial photoactivity and crystallinity upon reuse.

6.
Chemistry ; 25(39): 9280-9286, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31063224

RESUMO

This manuscript reports a comparative study of the catalytic performance of gold nanoparticles (NPs) encapsulated within MIL-101(Cr) with or without amino groups in the terephthalate linker. The purpose is to show how the amino groups can influence the microenvironment and catalytic stability of incorporated gold nanoparticles. The first influence of the presence of this substituent is the smaller particle size of Au NPs hosted in MIL-101(Cr)-NH2 (2.45±0.19 nm) compared with the parent MIL-101(Cr)-H (3.02±0.39 nm). Both materials are highly active to promote the aerobic alcohol oxidation and exhibit a wide substrate scope. Although both catalysts can achieve turnover numbers as high as 106 for the solvent-free aerobic oxidation of benzyl alcohol, Au@MIL-101(Cr)-NH2 exhibits higher turnover frequency values (12 000 h-1 ) than Au@MIL-101(Cr)-H (6800 h-1 ). Au@MIL-101(Cr)-NH2 also exhibits higher catalytic stability, being recyclable for 20 times with coincident temporal conversion profiles, in comparison with some decay observed in the parent Au@MIL-101(Cr)-H. Characterization by transmission electron microscopy of the 20-times used samples shows a very minor particle size increase in the case of Au@MIL-101(Cr)-NH2 (2.97±0.27 nm) in comparison with the Au@MIL-101(Cr)-H analog (5.32±0.72 nm). The data presented show the potential of better control of the microenvironment to improve the performance of encapsulated Au nanoparticles.

7.
Molecules ; 24(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443444

RESUMO

Nitro group reduction is a reaction of a considerable importance for the preparation of bulk chemicals and in organic synthesis. There are reports in the literature showing that incorporation of metal nanoparticles (MNPs) inside metal-organic frameworks (MOFs) is a suitable strategy to develop catalysts for these reactions. Some of the examples reported in the literature have shown activity data confirming the superior performance of MNPs inside MOFs. In the present review, the existing literature reports have been grouped depending on whether these MNPs correspond to a single metal or they are alloys. The final section of this review summarizes the state of the art and forecasts future developments in the field.


Assuntos
Nanopartículas Metálicas/química , Estruturas Metalorgânicas , Nitrocompostos/química , Catálise , Técnicas de Química Sintética , Nanopartículas Metálicas/ultraestrutura , Metais/química , Oxirredução
8.
Angew Chem Int Ed Engl ; 58(49): 17843-17848, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31584744

RESUMO

Prolonged (weeks) UV/Vis irradiation under Ar of UiO-66(Zr), UiO66 Zr-NO2 , MIL101 Fe, MIL125 Ti-NH2 , MIL101 Cr and MIL101 Cr(Pt) shows that these MOFs undergo photodecarboxylation of benzenedicarboxylate (BDC) linker in a significant percentage depending on the structure and composition of the material. Routine characterization techniques such as XRD, UV/Vis spectroscopy and TGA fail to detect changes in the material, although porosity and surface area change upon irradiation of powders. In contrast to BCD-containing MOFs, zeolitic imidazolate ZIF-8 does not evolve CO2 or any other gas upon irradiation.

9.
Chem Soc Rev ; 46(15): 4501-4529, 2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-28569912

RESUMO

Graphenes and related materials have attracted growing interest as metal-free catalysts. The present review is focused on describing the active sites that have been proposed to be responsible for the catalytic activity observed for such systems. It will be shown that diverse defects and chemical functionalities on the graphene layers can catalyze reactions, including oxygenated functional groups, carbon vacancies and holes, edge effects, and the presence of dopant elements. Besides discrete active sites, the catalytic activity arising from the collective properties of graphenes as materials by adsorbing substrates and reagents and activating them by charge transfer is also commented. The review has an introductory general section summarizing the general methodologies that have been used to support the proposed structure of the active sites, including theoretical calculations, comparison of the catalytic activity of graphene samples with different compositions, the use of organic molecules as models of the active centers, and selective masking of functional groups. The review is concluded with our view on future developments in the field.

10.
Chemistry ; 23(61): 15244-15275, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28544022

RESUMO

The ideal graphene is a one-atom thick single layer of carbon atoms having sp2 hybridation in hexagonal arrangement. Due to their large surface area and good dispersability in common solvents, graphenes are suitable platforms to anchor covalently units. The appended unit can introduce additional functionality to graphene. Although the field of covalently modified graphene is still starting compared to the development of other carbon nanoforms, there is already many examples describing the use of modified graphenes as recoverable photo-, electrocatalysts as well as in non-linear optics and to improve mechanical resistance and solubility of graphenes. In this Review, the state of the art of covalently modified graphenes for these applications is reviewed. After some general sections describing properties and characterization techniques of graphenes relevant to their use as supports and those general reactions and starting substrates to obtain the modified graphene conjugates, the main body of the review describes the preparation and properties of covalently modified graphene depending on their use as catalyst, photocatalyst, photoresponsive material, non-linear optics, electrocatalyst and other uses. The last section of the review summarizes the main achievements of the field and what should be according to our view the future developments.

11.
Chemphyschem ; 17(7): 958-62, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26694081

RESUMO

Transient absorption spectroscopy of graphene oxide (GO) and reduced graphene oxide (rGO) suspensions provides evidence for the photochemical generation of a charge-separated state on the microsecond timescale upon laser excitation. The lifetime and quantum yield of charge separation in suspended rGO were found to be higher than for GO. This could be advantageous for optoelectronic and photocatalytic applications, where graphene-based materials act as charge (electron) carriers. The electron-transfer quenching of the rGO charge-separated state by different amines is more efficient when the amine is a better electron donor and more easily oxidized.

12.
Chemistry ; 21(34): 11966-71, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26206063

RESUMO

Reduced graphene oxide exhibits high activity as Fenton catalyst with HO(.) radical generation efficiency over 82 % and turnover numbers of 4540 and 15023 for phenol degradation and H2 O2 consumption, respectively. These values compare favorably with those achieved with transition metals, showing the potential of carbocatalysts for the Fenton reaction.

13.
Chemphyschem ; 16(2): 335-41, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25418956

RESUMO

In the context of gaining understanding on the origin of the visible-light photoresponse of TiO2 containing gold nanoparticles, the photocurrent spectra and photocatalytic H2 evolution of titania (P25) and Au-P25 were compared. Whereas no photocurrent was detected upon visible-light irradiation for either of the two photocatalysts, Au-P25 exhibited photocatalytic H2 evolution for wavelengths between 400 and 575 nm. This contradictory behavior under visible-light irradiation of Au-P25 was rationalized by transient absorption spectroscopy. It was suggested that photocatalytic H2 generation results from methanol quenching of the charge-separation state in each semiconductor nanoparticle, but the lack of photocurrent is due to the short lifetime of the charge separation, which makes interparticle charge migration for micrometric distances unlikely.

14.
Chemphyschem ; 16(10): 2094-8, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-25968612

RESUMO

A series of (N, O)-co-doped graphenes with different N and O loadings are prepared by the pyrolysis of natural chitosan. When the percentage of dopant increases, the conduction-band potential and charge-separation quantum yield increase, whereas the charge-separation lifetime decreases.

15.
Chemphyschem ; 15(5): 924-8, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24590870

RESUMO

The photochemistry of two isostructural metal-organic frameworks based on 5-amino/5-formamidoisophthalate (CAU-10-NH2 /NHCHO) or mixed-linker 5-amino/5-formamido- and 5-nitroisophthalate (CAU-10-NO2 /NH2 /NHCHO) has been studied using laser flash photolysis. 355 nm excitation of CAU-10-NH2 /NHCHO leads to a transient absorption spectrum characterized by a broad continuous absorption from 380 to 800 nm that was attributed to the presence of holes (440 nm) and electrons (600 nm) based on iPrOH and N2 O quenching, respectively. In contrast, no transients were observed for the isostructural mixed-linker CAU-10-NO2 /NH2 /NHCHO, data that is compatible with the uniform distribution of linkers 5-amino/5-formamido/5-nitroisophthalate as charge-transfer complex pairs. The same effect of quenching of 5-aminoisophthalate transients by 5-nitroisophthalate was also observed in aqueous solution (pH 9) but with much lower strength. Using a simple Stern-Volmer formalism allowed the estimation of the interaction of 5-aminoisophthalate with 5-nitroisophthalate in MOF to be 5.2×10(4) times stronger than in the aqueous phase.

16.
Angew Chem Int Ed Engl ; 53(46): 12581-6, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25196304

RESUMO

Copper nanoparticles (NPs) supported on a series of undoped and doped graphene materials (Gs) have been obtained by pyrolysis of alginate or chitosan biopolymers, modified or not with boric acid, containing Cu(2+) ions at 900 °C under inert atmosphere. The resulting Cu-G materials containing about 17 wt % Cu NPs (from 10 to 200 nm) exhibit high catalytic activity for the dehydrogenative coupling of silanes with alcohols. The optimal material consisting on Cu-(B)G is more efficient than Cu NPs on other carbon supports.

17.
ChemSusChem ; : e202400062, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427722

RESUMO

Developing sustainable cost-effective strategies for valorization of field-spent granular activated carbon (s-GAC) from industrial water treatment has gained much interest. Here, we report a cost-effective strategy for the regeneration of s-GAC as an adsorbent in a large-scale drinking water treatment plant and used as an efficient and durable ozonation catalyst in water. To achieve this, a series of samples is prepared by subjecting s-GAC to thermally controlled combustion treatments with and without pyrolysis. The catalytic performance of the optimized sample is evaluated for oxalic acid degradation as the model pollutant under batch (>15 h) and continuous flow operations (>200 h). The partially deactivated catalyst upon reuse is restored by thermal treatment. Electron paramagnetic resonance and selective quenching experiments show the formation of singlet oxygen (1O2) during catalytic ozonation. The GAC-ozonation catalyst is efficient to minimize the formation of chlorinated disinfection by-products like trihalomethanes and haloacetic acids in an urban wastewater effluent.

18.
Chemistry ; 19(23): 7547-54, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23576323

RESUMO

Nitrogen (N)-, boron (B)-, and boron,nitrogen (B,N)-doped graphene (G) act as carbocatalysts, promoting the aerobic oxidation of the benzylic positions of aromatic hydrocarbons and cyclooctane to the corresponding alcohol/ketone mixture with more than 90 % selectivity. The most active material was the co-doped (B,N)G, which, in the absence of solvent and with a substrate/(B,N)G ratio of 200, achieved 50 % tetralin conversion in 24 h with a alcohol/ketone selectivity of 80 %. An FT-Raman spectroscopic study of a sample of (B,N)G heated at 100 °C in the presence of oxygen revealed new bands that disappeared upon evacuation and that have been attributed to hydroperoxide-like species formed on the G sheet based on the isotopic shift of the peak from 819 to 779 cm(-1) when (18)O2 was used as the oxidizing reagent. Furthermore, (B)G and (N)G exhibited high catalytic activity in the aerobic oxidation of styrene to benzaldehyde (BA) in 4 h. However, the product distribution changed over time and after 10 h a significant percentage of styrene oxide (SO) was observed under the same conditions. The use of doped G as catalyst appears to offer broad scope for the aerobic oxidation of benzylic compounds and styrene, for which low catalyst loading, mild reaction temperatures, and no additional solvents are required.

19.
Chemphyschem ; 14(3): 618-26, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23345005

RESUMO

The present manuscript reports a mesoporous organosilica (mpSiO(2)) containing a p-phenylene vinylene (PPV) co-polymer partially grafted to the walls of the hybrid material (PPV⊂mpSiO(2)). This material was obtained by using a bis-silylated 2,5-bis(chloromethylphenylene) as the silicon precursor in combination with tetraethyl orthosilicate (TEOS) and cetyltrimethylammonium bromide (CTABr) as the surfactant. The final polymer was formed by adding appropriate amounts of 2,2'-{[2,5-bis(chloromethyl)-1,4-phenylene]bis(oxy)}diethanol as the co-monomer and KtBuO as the base. The resulting PPV⊂mpSiO(2) was characterized by XRD, SEM, TEM, FTIR spectroscopy, and magic angle spinning (29) Si NMR spectroscopy; all spectroscopic data were in agreement with the presence of a conducting polymer. The resulting PPV⊂mpSiO(2) material exhibits electrical conductivity, particularly after I(2) doping, an electrochemical response, and electroluminescence. Laser flash photolysis studies of PPV⊂mpSiO(2) indicate that this material can form PPV(·+) polarons that could be responsible for the electrochemical and electroluminescent response.

20.
Small ; 8(12): 1895-903, 2012 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-22454217

RESUMO

Ceria-supported gold nanoparticles are prepared exhibiting peroxidase activity and acting as radical traps. Au/CeO(2) shows a remarkable biocompatibility as demonstrated by measuring cellular viability, proliferation, and lack of apoptosis for two human cell lines (Hep3B and HeLa). The antioxidant activity of Au/CeO(2) against reactive oxygen species (ROS) is demonstrated by studying the cellular behavior of Hep3B and HeLa in a model of cellular oxidative stress. It is determined that Au/CeO(2) exhibits higher antioxidant activity than glutathione, the main cytosolic antioxidant compound, and its CeO(2) carrier. Overall the result presented here shows the potential of implementing well-established nanoparticulated gold catalysts with remarkable biocompatibility in cellular biology.


Assuntos
Ouro/química , Células HeLa/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas/química , Nanotecnologia/métodos , Antioxidantes/química , Apoptose , Materiais Biocompatíveis/química , Catálise , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Estresse Oxidativo , Peroxidases/química , Polímeros/química , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA