Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Hum Genet ; 143(3): 437-453, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38520561

RESUMO

General transcription factor IIIC subunit 5 (GTF3C5) encodes transcription factor IIIC63 (TFIIIC63). It binds to DNA to recruit another transcription factor, TFIIIB, and RNA polymerase III (Pol III) to mediate the transcription of small noncoding RNAs, such as tRNAs. Here, we report four individuals from three families presenting with a multisystem developmental disorder phenotype with biallelic variants in GTF3C5. The overlapping features include growth retardation, developmental delay, intellectual disability, dental anomalies, cerebellar malformations, delayed bone age, skeletal anomalies, and facial dysmorphism. Using lymphoblastoid cell lines (LCLs) from two affected individuals, we observed a reduction in TFIIIC63 protein levels compared to control LCLs. Genome binding of TFIIIC63 protein is also reduced in LCL from one of the affected individuals. Additionally, approximately 40% of Pol III binding regions exhibited reduction in the level of Pol III occupancy in the mutant genome relative to the control, while approximately 54% of target regions showed comparable levels of Pol III occupancy between the two, indicating partial impairment of Pol III occupancy in the mutant genome. Yeasts with subject-specific variants showed temperature sensitivity and impaired growth, supporting the notion that the identified variants have deleterious effects. gtf3c5 mutant zebrafish showed developmental defects, including a smaller body, head, and eyes. Taken together, our data show that GTF3C5 plays an important role in embryonic development, and that biallelic variants in this gene cause a multisystem developmental disorder. Our study adds GTF3C5-related disorder to the growing list of genetic disorders associated with Pol III transcription machinery.


Assuntos
Deficiências do Desenvolvimento , RNA Polimerase III , Fatores de Transcrição TFIII , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Alelos , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Deficiência Intelectual/genética , Mutação , Linhagem , Fenótipo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo , Fatores de Transcrição TFIII/genética , Fatores de Transcrição TFIII/metabolismo , Transcrição Gênica , Peixe-Zebra/genética
2.
Mov Disord ; 39(6): 983-995, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581205

RESUMO

BACKGROUND: Based on a limited number of reported families, biallelic CA8 variants have currently been associated with a recessive neurological disorder named, cerebellar ataxia, mental retardation, and dysequilibrium syndrome 3 (CAMRQ-3). OBJECTIVES: We aim to comprehensively investigate CA8-related disorders (CA8-RD) by reviewing existing literature and exploring neurological, neuroradiological, and molecular observations in a cohort of newly identified patients. METHODS: We analyzed the phenotype of 27 affected individuals from 14 families with biallelic CA8 variants (including data from 15 newly identified patients from eight families), ages 4 to 35 years. Clinical, genetic, and radiological assessments were performed, and zebrafish models with ca8 knockout were used for functional analysis. RESULTS: Patients exhibited varying degrees of neurodevelopmental disorders (NDD), along with predominantly progressive cerebellar ataxia and pyramidal signs and variable bradykinesia, dystonia, and sensory impairment. Quadrupedal gait was present in only 10 of 27 patients. Progressive selective cerebellar atrophy, predominantly affecting the superior vermis, was a key diagnostic finding in all patients. Seven novel homozygous CA8 variants were identified. Zebrafish models demonstrated impaired early neurodevelopment and motor behavior on ca8 knockout. CONCLUSION: Our comprehensive analysis of phenotypic features indicates that CA8-RD exhibits a wide range of clinical manifestations, setting it apart from other subtypes within the category of CAMRQ. CA8-RD is characterized by cerebellar atrophy and should be recognized as part of the autosomal-recessive cerebellar ataxias associated with NDD. Notably, the presence of progressive superior vermis atrophy serves as a valuable diagnostic indicator. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Cerebelar , Peixe-Zebra , Humanos , Ataxia Cerebelar/genética , Criança , Adolescente , Masculino , Feminino , Pré-Escolar , Animais , Adulto , Adulto Jovem , Anoctaminas/genética , Deficiência Intelectual/genética , Fenótipo , Transtornos do Neurodesenvolvimento/genética
3.
Neurotherapeutics ; 21(1): e00324, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38306952

RESUMO

Mitochondrial diseases, a diverse and intricate group of disorders, result from both nuclear DNA and mitochondrial DNA malfunctions, leading to a decrease in cellular energy (ATP) production. The increasing understanding of molecular, biochemical, and genetic irregularities associated with mitochondrial dysfunction has led to a wider recognition of varying mitochondrial disease phenotypes. This broadening landscape has led to a diverse array of neuroimaging findings, posing a challenge to radiologists in identifying the extensive range of possible patterns. This review meticulously describes the central imaging features of mitochondrial diseases in children, as revealed by neuroimaging. It spans from traditional imaging findings to more recent and intricate diagnoses, offering insights and highlighting advancements in neuroimaging technology that can potentially guide a more efficient and accurate diagnostic approach.


Assuntos
Doenças Mitocondriais , Criança , Humanos , Doenças Mitocondriais/diagnóstico por imagem , Doenças Mitocondriais/genética , DNA Mitocondrial/genética , Mitocôndrias , Neuroimagem/métodos , Fenótipo
4.
J Neuroimaging ; 34(3): 386-392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217068

RESUMO

BACKGROUND AND PURPOSE: To define cystic patterns resulting from term hypoxic ischemic injury (HII) on delayed Magnetic Resonance Imaging (MRI) and determine associated HII patterns and lesions that reflect the severity of injury, from a database of African children with cerebral palsy. METHODS: Retrospective review of 1175 children with cerebral palsy due to term HII diagnosed on late MRI, identifying those with cystic changes. These were classified as multicystic or (multi-) focal-cystic, and were evaluated for associated injuries-thalami, basal ganglia, hippocampi, cerebellum, and presence of ulegyria. RESULTS: Three hundred and eighty-eight of 1175 (33%) children had cystic encephalomalacia. Two hundred and seven of 388 (53.3%) had focal-cystic and 181/388 (46.6%) had multicystic injury. The focal-cystic group comprised 87.9% (182/207) with thalamic injury, 25.6% (53/207) with basal ganglia injury, and 15% (31/207) with cerebellar involvement. Basal-ganglia-thalamus (BGT) pattern was present in 43.9% (91/207) and ulegyria in 69.6% (144/207). In the multicystic group, 88.9% (161/181) had thalamic injury, 30.9% (56/181) had basal ganglia injury, and 21% (38/181) had cerebellar involvement. BGT pattern was observed in 29.8% (54/181) and ulegyria in 28.7%. (52/181). Significant associations (p<.05) were found between multicystic injury and caudate/globus pallidus involvement, and between focal-cystic pattern of injury and ulegyria. CONCLUSIONS: Cystic encephalomalacia was seen in almost one-third of patients with term HII imaged with delayed MRI, with a similar prevalence of focal-cystic and multicystic injury. Multicystic injury was associated with caudate and globus pallidi involvement, typical of the BGT pattern of HII, whereas the focal-cystic pattern was associated with ulegyria, typical of watershed injury.


Assuntos
Encefalomalacia , Hipóxia-Isquemia Encefálica , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Imageamento por Ressonância Magnética/métodos , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Encefalomalacia/diagnóstico por imagem , Encefalomalacia/etiologia , Diagnóstico Diferencial , Paralisia Cerebral/diagnóstico por imagem , Lactente , Recém-Nascido , Pré-Escolar , Estudos Retrospectivos , Criança , Sensibilidade e Especificidade , Reprodutibilidade dos Testes
5.
Pediatr Neurol ; 152: 73-78, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232653

RESUMO

BACKGROUND: We aimed to determine the frequency of cerebellar injury using delayed magnetic resonance imaging (MRI) in children with cerebral palsy, diagnosed with term hypoxic-ischemic injury (HII), and to characterize this for the different MRI patterns of HII. METHODS: We retrospectively reviewed delayed MRI scans in children with cerebral palsy, of whom 1175 had term HII. The pattern of HII was classified into basal ganglia-thalamus (BGT) pattern, watershed (WS) pattern, combined BGT/WS, and multicystic HII. Cerebellar location (hemisphere versus vermis) and the MRI characteristics were documented overall and for each of the different patterns of HII, as well as the association with thalamic injury. RESULTS: Cerebellar injury was found in 252 of 1175 (21.4%) (median age 6 years [interquartile range: 3 to 9 years]). Of these, 49% (124 of 252) were associated with a BGT pattern, 13% (32 of 252) with a WS pattern, 28% (72 of 252) with a combined BGT/WS pattern, and 10% (24 of 252) with a multicystic pattern. The vermis was abnormal in 83% (209 of 252), and the hemispheres were abnormal in 34% (86 of 252) (with 17% [43 of 252] showing both vermis and hemispheric abnormality). CONCLUSIONS: Over a fifth of patients with cerebral palsy due to HII had a cerebellar abnormality on delayed MRI, most commonly involving the vermis (83%), and as part of a BGT pattern of injury in just under half of these likely reflecting the association of cerebellar vermis injury with profound insults.


Assuntos
Paralisia Cerebral , Hipóxia-Isquemia Encefálica , Criança , Humanos , Pré-Escolar , Paralisia Cerebral/complicações , Estudos Retrospectivos , Hipóxia-Isquemia Encefálica/complicações , Imageamento por Ressonância Magnética/métodos , Gânglios da Base/patologia , Hipóxia
6.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260472

RESUMO

Many neurodevelopmental defects are linked to perturbations in genes involved in housekeeping functions, such as those encoding ribosome biogenesis factors. However, how reductions in ribosome biogenesis can result in tissue and developmental specific defects remains a mystery. Here we describe new allelic variants in the ribosome biogenesis factor AIRIM primarily associated with neurodevelopmental disorders. Using human cerebral organoids in combination with proteomic analysis, single-cell transcriptome analysis across multiple developmental stages, and single organoid translatome analysis, we identify a previously unappreciated mechanism linking changes in ribosome levels and the timing of cell fate specification during early brain development. We find ribosome levels decrease during neuroepithelial differentiation, making differentiating cells particularly vulnerable to perturbations in ribosome biogenesis during this time. Reduced ribosome availability more profoundly impacts the translation of specific transcripts, disrupting both survival and cell fate commitment of transitioning neuroepithelia. Enhancing mTOR activity by both genetic and pharmacologic approaches ameliorates the growth and developmental defects associated with intellectual disability linked variants, identifying potential treatment options for specific brain ribosomopathies. This work reveals the cellular and molecular origins of protein synthesis defect-related disorders of human brain development. Highlights: AIRIM variants reduce ribosome levels specifically in neural progenitor cells. Inappropriately low ribosome levels cause a transient delay in radial glia fate commitment.Reduced ribosome levels impair translation of a selected subset of mRNAs.Genetic and pharmacologic activation of mTORC1 suppresses AIRIM-linked phenotypes.

7.
Arq. neuropsiquiatr ; 79(4): 321-333, Apr. 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1278384

RESUMO

ABSTRACT Background: Pediatric arterial ischemic stroke (AIS), which was thought to be a rare disorder, is being increasingly recognized as an important cause of neurological morbidity, thanks to new advances in neuroimaging. Objective: The aim of this study was to review the main etiologies of stroke due to arteriopathy in children. Methods: Using a series of cases from our institution, we addressed its epidemiological aspects, physiopathology, imaging findings from CT, MR angiography, MR conventional sequences and MR DWI, and nuclear medicine findings. Results: Through discussion of the most recent classification for childhood AIS (Childhood AIS Standardized Classification and Diagnostic Evaluation, CASCADE), we propose a modified classification based on the anatomical site of disease, which includes vasculitis, varicella, arterial dissection, moyamoya, fibromuscular dysplasia, Takayasu's arteritis and genetic causes (such as ACTA-2 mutation, PHACE syndrome and ADA-2 deficiency). We have detailed each of these separately. Conclusions: Prompt recognition of AIS and thorough investigation for potential risk factors are crucial for a better outcome. In this scenario, neurovascular imaging plays an important role in diagnosing AIS and identifying children at high risk of recurrent stroke.


RESUMO Introdução: O acidente vascular cerebral (AVC) pediátrico, considerado um distúrbio raro, está sendo cada vez mais reconhecido como importante causa de morbidade neurológica, graças aos novos avanços na neuroimagem. Objetivo: Revisar as principais etiologias do AVC por arteriopatia em crianças. Métodos: Utilizando-se de uma série de casos de nossa instituição, abordamos seus aspectos epidemiológicos, fisiopatológicos e de imagem na angiotomografia computadorizada e angiorressonância magnética, sequências convencionais e avançadas de ressonância magnética e medicina nuclear. Resultados: Com base na classificação mais recente de AVC na infância (Classificação Padronizada e Avaliação Diagnóstica do AVC na Infância - CASCADE) propusemos uma classificação modificada com base no local anatômico da doença, que inclui vasculite, varicela, dissecção arterial, Moyamoya, displasia fibromuscular, arterite de Takayasu e causas genéticas (como mutação ACTA-2, síndrome PHACE e deficiência de ADA-2), detalhando cada uma separadamente. Conclusões: O reconhecimento imediato do AVC na infância e a investigação minuciosa de possíveis fatores de risco são cruciais para um melhor resultado. Nesse cenário, a imagem neurovascular desempenha papel importante no diagnóstico de AVC e na identificação de crianças com alto risco de recorrência.


Assuntos
Humanos , Criança , Doenças Arteriais Cerebrais , Isquemia Encefálica , Acidente Vascular Cerebral , Recidiva , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA