Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Physiol Plant ; 175(6): e14080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148199

RESUMO

The development of light emitting diodes (LED) gives new possibilities to use the light spectrum to manipulate plant morphology and physiology in plant production and research. Here, vegetative Chrysanthemum × morifolium were grown at a photosynthetic photon flux density of 230 µmol m-2 s-1 under monochromatic blue, cyan, green, and red, and polychromatic red:blue or white light with the objective to investigate the effect on plant morphology, gas exchange and metabolic profile. After 33 days of growth, branching and leaf number increased from blue to red light, while area per leaf, leaf weight fraction, flavonol index, and stomatal density and conductance decreased, while dry matter production was mostly unaffected. Plants grown under red light had decreased photosynthesis performance compared with blue or white light-grown plants. The primary and secondary metabolites, such as organic acids, amino acids and phenylpropanoids (measured by non-targeted metabolomics of polar metabolites), were regulated differently under the different light qualities. Specifically, the levels of reduced ascorbic acid and its oxidation products, and the total ascorbate pool, were significantly different between blue light-grown plants and plants grown under white or red:blue light, which imply photosynthesis-driven alterations in oxidative pressure under different light regimens. The overall differences in plant phenotype, inflicted by blue, red:blue or red light, are probably due to a shift in balance between regulatory pathways controlled by blue light receptors and/or phytochrome. Although morphology, physiology, and metabolism differed substantially between plants grown under different qualities of light, these changes had limited effects on biomass accumulation.


Assuntos
Chrysanthemum , Biomassa , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Plantas
2.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36850436

RESUMO

Breast cancer is the most prevalent cancer in the world and the fifth-leading cause of cancer-related death. Treatment is effective in the early stages. Thus, a need to screen considerable portions of the population is crucial. When the screening procedure uncovers a suspect lesion, a biopsy is performed to assess its potential for malignancy. This procedure is usually performed using real-time Ultrasound (US) imaging. This work proposes a visualization system for US breast biopsy. It consists of an application running on AR glasses that interact with a computer application. The AR glasses track the position of QR codes mounted on an US probe and a biopsy needle. US images are shown in the user's field of view with enhanced lesion visualization and needle trajectory. To validate the system, latency of the transmission of US images was evaluated. Usability assessment compared our proposed prototype with a traditional approach with different users. It showed that needle alignment was more precise, with 92.67 ± 2.32° in our prototype versus 89.99 ± 37.49° in a traditional system. The users also reached the lesion more accurately. Overall, the proposed solution presents promising results, and the use of AR glasses as a tracking and visualization device exhibited good performance.


Assuntos
Realidade Aumentada , Feminino , Humanos , Interface Usuário-Computador , Ultrassonografia Mamária , Ultrassonografia , Biópsia
3.
J Biol Chem ; 296: 100552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33744293

RESUMO

The Cellulosome is an intricate macromolecular protein complex that centralizes the cellulolytic efforts of many anaerobic microorganisms through the promotion of enzyme synergy and protein stability. The assembly of numerous carbohydrate processing enzymes into a macromolecular multiprotein structure results from the interaction of enzyme-borne dockerin modules with repeated cohesin modules present in noncatalytic scaffold proteins, termed scaffoldins. Cohesin-dockerin (Coh-Doc) modules are typically classified into different types, depending on structural conformation and cellulosome role. Thus, type I Coh-Doc complexes are usually responsible for enzyme integration into the cellulosome, while type II Coh-Doc complexes tether the cellulosome to the bacterial wall. In contrast to other known cellulosomes, cohesin types from Bacteroides cellulosolvens, a cellulosome-producing bacterium capable of utilizing cellulose and cellobiose as carbon sources, are reversed for all scaffoldins, i.e., the type II cohesins are located on the enzyme-integrating primary scaffoldin, whereas the type I cohesins are located on the anchoring scaffoldins. It has been previously shown that type I B. cellulosolvens interactions possess a dual-binding mode that adds flexibility to scaffoldin assembly. Herein, we report the structural mechanism of enzyme recruitment into B. cellulosolvens cellulosome and the identification of the molecular determinants of its type II cohesin-dockerin interactions. The results indicate that, unlike other type II complexes, these possess a dual-binding mode of interaction, akin to type I complexes. Therefore, the plasticity of dual-binding mode interactions seems to play a pivotal role in the assembly of B. cellulosolvens cellulosome, which is consistent with its unmatched complexity and size.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulossomas/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Clostridiales/metabolismo , Proteínas de Bactérias/genética , Bacteroides/genética , Bacteroides/crescimento & desenvolvimento , Proteínas de Ciclo Celular/genética , Celobiose/metabolismo , Celulose/metabolismo , Proteínas Cromossômicas não Histona/genética , Clostridiales/genética , Clostridiales/crescimento & desenvolvimento , Coesinas
4.
Curr Opin Clin Nutr Metab Care ; 25(5): 311-318, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35788540

RESUMO

PURPOSE OF REVIEW: This review focuses on the recent findings from lipidomics studies as related to nutrition and health research. RECENT FINDINGS: Several lipidomics studies have investigated malnutrition, including both under- and overnutrition. Focus has been both on the early-life nutrition as well as on the impact of overfeeding later in life. Multiple studies have investigated the impact of different macronutrients in lipidome on human health, demonstrating that overfeeding with saturated fat is metabolically more harmful than overfeeding with polyunsaturated fat or carbohydrate-rich food. Diet rich in saturated fat increases the lipotoxic lipids, such as ceramides and saturated fatty-acyl-containing triacylglycerols, increasing also the low-density lipoprotein aggregation rate. In contrast, diet rich in polyunsaturated fatty acids, such as n-3 fatty acids, decreases the triacylglycerol levels, although some individuals are poor responders to n-3 supplementation. SUMMARY: The results highlight the benefits of lipidomics in clinical nutrition research, also providing an opportunity for personalized nutrition. An area of increasing interest is the interplay of diet, gut microbiome, and metabolome, and how they together impact individuals' responses to nutritional challenges.


Assuntos
Ácidos Graxos , Lipidômica , Dieta , Ácidos Graxos Insaturados , Humanos , Triglicerídeos
5.
Subcell Biochem ; 96: 323-354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252735

RESUMO

Cellulosomes are elaborate multienzyme complexes capable of efficiently deconstructing lignocellulosic substrates, produced by cellulolytic anaerobic microorganisms, colonizing a large variety of ecological niches. These macromolecular structures have a modular architecture and are composed of two main elements: the cohesin-bearing scaffoldins, which are non-catalytic structural proteins, and the various dockerin-bearing enzymes that tenaciously bind to the scaffoldins. Cellulosome assembly is mediated by strong and highly specific interactions between the cohesin modules, present in the scaffoldins, and the dockerin modules, present in the catalytic units. Cellulosomal architecture and composition varies between species and can even change within the same organism. These differences seem to be largely influenced by external factors, including the nature of the available carbon-source. Even though cellulosome producing organisms are relatively few, the development of new genomic and proteomic technologies has allowed the identification of cellulosomal components in many archea, bacteria and even some primitive eukaryotes. This reflects the importance of this cellulolytic strategy and suggests that cohesin-dockerin interactions could be involved in other non-cellulolytic processes. Due to their building-block nature and highly cellulolytic capabilities, cellulosomes hold many potential biotechnological applications, such as the conversion of lignocellulosic biomass in the production of biofuels or the development of affinity based technologies.


Assuntos
Celulose/metabolismo , Celulossomas/enzimologia , Celulossomas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteômica , Coesinas
6.
Physiol Plant ; 173(3): 750-761, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34510478

RESUMO

During recent years, we have advanced our understanding of plant molecular responses to ultraviolet radiation (UV, 280-400 nm); however, how plants respond to UV radiation under different spectral light qualities is poorly understood. In this study, cucumber plants (Cucumis sativus "Lausanna RZ F1") were grown under monochromatic blue, green, red, and broadband white light in combination with UV radiation. The effects of light quality and UV radiation on acclimatory responses were assessed by measuring transcript accumulation of ELONGATED HYPOCOTYL 5 (HY5), CHALCONE SYNTHASE 2 (CHS2), and LIGHT HARVESTING COMPLEX II (LHCII), and the accumulation of flavonoids and hydroxycinnamic acids in the leaves. The growth light backgrounds differentially regulated gene expression and metabolite accumulation. While HY5 and CHS2 transcripts were induced by blue and white light, LHCII was induced by white and red light. Furthermore, UV radiation antagonized the effects of blue, red, green, and white light on transcript accumulation in a gene-dependent manner. Plants grown under blue light with supplementary UV radiation increased phenylalanine, flavonol disaccharide I and caffeic acid contents compared to those exposed only to blue light. UV radiation also induced the accumulation of flavonol disaccharide I and II, ferulic acid hexose and coumaric acid hexose in plants grown under green light. Our findings provide a further understanding of plant responses to UV radiation in combination with different light spectra and contribute to the design of light recipes for horticultural practices that aim to modify plant metabolism and ultimately improve crop quality.


Assuntos
Cucumis sativus , Cucumis sativus/genética , Flavonoides , Hipocótilo , Folhas de Planta , Raios Ultravioleta
7.
J Biol Chem ; 293(11): 4201-4212, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29367338

RESUMO

The cellulosome is a remarkably intricate multienzyme nanomachine produced by anaerobic bacteria to degrade plant cell wall polysaccharides. Cellulosome assembly is mediated through binding of enzyme-borne dockerin modules to cohesin modules of the primary scaffoldin subunit. The anaerobic bacterium Acetivibrio cellulolyticus produces a highly intricate cellulosome comprising an adaptor scaffoldin, ScaB, whose cohesins interact with the dockerin of the primary scaffoldin (ScaA) that integrates the cellulosomal enzymes. The ScaB dockerin selectively binds to cohesin modules in ScaC that anchors the cellulosome onto the cell surface. Correct cellulosome assembly requires distinct specificities displayed by structurally related type-I cohesin-dockerin pairs that mediate ScaC-ScaB and ScaA-enzyme assemblies. To explore the mechanism by which these two critical protein interactions display their required specificities, we determined the crystal structure of the dockerin of a cellulosomal enzyme in complex with a ScaA cohesin. The data revealed that the enzyme-borne dockerin binds to the ScaA cohesin in two orientations, indicating two identical cohesin-binding sites. Combined mutagenesis experiments served to identify amino acid residues that modulate type-I cohesin-dockerin specificity in A. cellulolyticus Rational design was used to test the hypothesis that the ligand-binding surfaces of ScaA- and ScaB-associated dockerins mediate cohesin recognition, independent of the structural scaffold. Novel specificities could thus be engineered into one, but not both, of the ligand-binding sites of ScaB, whereas attempts at manipulating the specificity of the enzyme-associated dockerin were unsuccessful. These data indicate that dockerin specificity requires critical interplay between the ligand-binding surface and the structural scaffold of these modules.


Assuntos
Bactérias Anaeróbias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Celulossomas/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Catálise , Domínio Catalítico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Subunidades Proteicas , Homologia de Sequência , Relação Estrutura-Atividade , Especificidade por Substrato , Coesinas
8.
Acta Oncol ; 58(12): 1731-1739, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31423867

RESUMO

Introduction: Within an International Atomic Energy Agency (IAEA) co-ordinated research project (CRP), a remote end-to-end dosimetric quality audit for intensity modulated radiation therapy (IMRT)/ volumetric arc therapy (VMAT) was developed to verify the radiotherapy chain including imaging, treatment planning and dose delivery. The methodology as well as the results obtained in a multicentre pilot study and national trial runs conducted in close cooperation with dosimetry audit networks (DANs) of IAEA Member States are presented.Material and methods: A solid polystyrene phantom containing a dosimetry insert with an irregular solid water planning target volume (PTV) and organ at risk (OAR) was designed for this audit. The insert can be preloaded with radiochromic film and four thermoluminescent dosimeters (TLDs). For the audit, radiotherapy centres were asked to scan the phantom, contour the structures, create an IMRT/VMAT treatment plan and irradiate the phantom. The dose prescription was to deliver 4 Gy to the PTV in two fractions and to limit the OAR dose to a maximum of 2.8 Gy. The TLD measured doses and film measured dose distributions were compared with the TPS calculations.Results: Sixteen hospitals from 13 countries and 64 hospitals from 6 countries participated in the multicenter pilot study and in the national runs, respectively. The TLD results for the PTV were all within ±5% acceptance limit for the multicentre pilot study, whereas for national runs, 17 participants failed to meet this criterion. All measured doses in the OAR were below the treatment planning constraint. The film analysis identified seven plans in national runs below the 90% passing rate gamma criteria.Conclusion: The results proved that the methodology of the IMRT/VMAT dosimetric end-to-end audit was feasible for its intended purpose, i.e., the phantom design and materials were suitable; the phantom was easy to use and it was robust enough for shipment. Most importantly the audit methodology was capable of identifying suboptimal IMRT/VMAT delivery.


Assuntos
Auditoria Médica/métodos , Órgãos em Risco , Imagens de Fantasmas , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Estudos de Viabilidade , Humanos , Agências Internacionais , Auditoria Médica/normas , Energia Nuclear , Projetos Piloto , Garantia da Qualidade dos Cuidados de Saúde , Radiometria/normas , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/normas , Tomografia Computadorizada por Raios X
9.
J Biol Chem ; 292(12): 4847-4860, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28179427

RESUMO

Deconstruction of cellulose, the most abundant plant cell wall polysaccharide, requires the cooperative activity of a large repertoire of microbial enzymes. Modular cellulases contain non-catalytic type A carbohydrate-binding modules (CBMs) that specifically bind to the crystalline regions of cellulose, thus promoting enzyme efficacy through proximity and targeting effects. Although type A CBMs play a critical role in cellulose recycling, their mechanism of action remains poorly understood. Here we produced a library of recombinant CBMs representative of the known diversity of type A modules. The binding properties of 40 CBMs, in fusion with an N-terminal GFP domain, revealed that type A CBMs possess the ability to recognize different crystalline forms of cellulose and chitin over a wide range of temperatures, pH levels, and ionic strengths. A Spirochaeta thermophila CBM64, in particular, displayed plasticity in its capacity to bind both crystalline and soluble carbohydrates under a wide range of extreme conditions. The structure of S. thermophila StCBM64C revealed an untwisted, flat, carbohydrate-binding interface comprising the side chains of four tryptophan residues in a co-planar linear arrangement. Significantly, two highly conserved asparagine side chains, each one located between two tryptophan residues, are critical to insoluble and soluble glucan recognition but not to bind xyloglucan. Thus, CBM64 compact structure and its extended and versatile ligand interacting platform illustrate how type A CBMs target their appended plant cell wall-degrading enzymes to a diversity of recalcitrant carbohydrates under a wide range of environmental conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Celulases/metabolismo , Spirochaeta/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Metabolismo dos Carboidratos , Parede Celular/metabolismo , Celulases/química , Celulose/metabolismo , Cristalografia por Raios X , Glucanos/metabolismo , Modelos Moleculares , Concentração Osmolar , Ligação Proteica , Conformação Proteica , Spirochaeta/química , Temperatura , Xilanos/metabolismo
10.
Eur J Nucl Med Mol Imaging ; 45(7): 1224-1232, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29476227

RESUMO

OBJECTIVE: To evaluate the predictive potential of total metabolic tumor volume (MTV) reduction during neoadjuvant chemotherapy (NACT) with 18F-FDG-PET/CT in an advanced FIGO stage III/IV epithelial ovarian cancer (EOC) patient cohort. METHODS: Twenty-nine primarily inoperable EOC patients underwent 18F-FDG-PET/CT before and after NACT. The pre- and post-NACT total MTV, in addition to the percentage MTV reduction during NACT, were compared with primary therapy outcome and progression-free survival (PFS). ROC-analysis determined an optimal threshold for MTV reduction identifying patients with progressive or stable disease (PD/SD) at the end of primary therapy. A multivariate analysis with residual tumor (0/>0), FIGO stage (III/IV) and MTV reduction compared to PFS was performed. The association between MTV reduction and overall survival (OS) was evaluated. RESULTS: The median pre- and post-NACT total MTV were 352 cm3 (range 150 to 1322 cm3) and 51 cm3 (range 0 to 417 cm3), respectively. The median MTV reduction during NACT was 89% (range 24% to 100%). Post-NACT MTV and MTV reduction associated with primary therapy outcome (MTV post-NACT p = 0.007, MTV reduction p = 0.001) and PFS (MTV post-NACT p = 0.005, MTV reduction p = 0.005). MTV reduction <85% identified the PD/SD patients (sensitivity 70%, specificity 78%, AUC 0.79). In a multivariate analysis, MTV reduction (p = 0.002) and FIGO stage (p = 0.003) were statistically significant variables associated with PFS. MTV reduction during NACT corresponded to OS (p = 0.05). CONCLUSION: 18F-FDG-PET/CT is helpful in NACT response evaluation. Patients with total MTV reduction <85% during NACT might be candidates for second-line chemotherapy and clinical trials, instead of interval debulking surgery.


Assuntos
Carcinoma Epitelial do Ovário/diagnóstico por imagem , Terapia Neoadjuvante , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Carga Tumoral , Idoso , Idoso de 80 Anos ou mais , Carcinoma Epitelial do Ovário/terapia , Feminino , Fluordesoxiglucose F18 , Humanos , Pessoa de Meia-Idade , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Prognóstico , Estudos Prospectivos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
11.
J Biol Chem ; 291(52): 26658-26669, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-27875311

RESUMO

The assembly of one of Nature's most elaborate multienzyme complexes, the cellulosome, results from the binding of enzyme-borne dockerins to reiterated cohesin domains located in a non-catalytic primary scaffoldin. Generally, dockerins present two similar cohesin-binding interfaces that support a dual binding mode. The dynamic integration of enzymes in cellulosomes, afforded by the dual binding mode, is believed to incorporate additional flexibility in highly populated multienzyme complexes. Ruminococcus flavefaciens, the primary degrader of plant structural carbohydrates in the rumen of mammals, uses a portfolio of more than 220 different dockerins to assemble the most intricate cellulosome known to date. A sequence-based analysis organized R. flavefaciens dockerins into six groups. Strikingly, a subset of R. flavefaciens cellulosomal enzymes, comprising dockerins of groups 3 and 6, were shown to be indirectly incorporated into primary scaffoldins via an adaptor scaffoldin termed ScaC. Here, we report the crystal structure of a group 3 R. flavefaciens dockerin, Doc3, in complex with ScaC cohesin. Doc3 is unusual as it presents a large cohesin-interacting surface that lacks the structural symmetry required to support a dual binding mode. In addition, dockerins of groups 3 and 6, which bind exclusively to ScaC cohesin, display a conserved mechanism of protein recognition that is similar to Doc3. Groups 3 and 6 dockerins are predominantly appended to hemicellulose-degrading enzymes. Thus, single binding mode dockerins interacting with adaptor scaffoldins exemplify an evolutionary pathway developed by R. flavefaciens to recruit hemicellulases to the sophisticated cellulosomes acting in the gastrointestinal tract of mammals.


Assuntos
Proteínas de Bactérias/metabolismo , Celulase/metabolismo , Celulossomas/metabolismo , Polissacarídeos/metabolismo , Ruminococcus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/metabolismo , Celulase/química , Celulossomas/microbiologia , Proteínas Cromossômicas não Histona/metabolismo , Cristalização , Cristalografia por Raios X , Infecções por Bactérias Gram-Positivas/microbiologia , Complexos Multienzimáticos , Ligação Proteica , Conformação Proteica , Ruminococcus/genética , Homologia de Sequência de Aminoácidos , Coesinas
12.
J Biol Chem ; 290(21): 13578-90, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25855788

RESUMO

Protein-protein interactions play a pivotal role in the assembly of the cellulosome, one of nature's most intricate nanomachines dedicated to the depolymerization of complex carbohydrates. The integration of cellulosomal components usually occurs through the binding of type I dockerin modules located at the C terminus of the enzymes to cohesin modules located in the primary scaffoldin subunit. Cellulosomes are typically recruited to the cell surface via type II cohesin-dockerin interactions established between primary and cell-surface anchoring scaffoldin subunits. In contrast with type II interactions, type I dockerins usually display a dual binding mode that may allow increased conformational flexibility during cellulosome assembly. Acetivibrio cellulolyticus produces a highly complex cellulosome comprising an unusual adaptor scaffoldin, ScaB, which mediates the interaction between the primary scaffoldin, ScaA, through type II cohesin-dockerin interactions and the anchoring scaffoldin, ScaC, via type I cohesin-dockerin interactions. Here, we report the crystal structure of the type I ScaB dockerin in complex with a type I ScaC cohesin in two distinct orientations. The data show that the ScaB dockerin displays structural symmetry, reflected by the presence of two essentially identical binding surfaces. The complex interface is more extensive than those observed in other type I complexes, which results in an ultra-high affinity interaction (Ka ∼10(12) M). A subset of ScaB dockerin residues was also identified as modulating the specificity of type I cohesin-dockerin interactions in A. cellulolyticus. This report reveals that recruitment of cellulosomes onto the cell surface may involve dockerins presenting a dual binding mode to incorporate additional flexibility into the quaternary structure of highly populated multienzyme complexes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ciclo Celular/química , Celulossomas/metabolismo , Proteínas Cromossômicas não Histona/química , Bactérias Gram-Positivas/química , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulossomas/química , Proteínas Cromossômicas não Histona/metabolismo , Cristalização , Cristalografia por Raios X , Bactérias Gram-Positivas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Ressonância de Plasmônio de Superfície , Coesinas
13.
J Biol Chem ; 290(26): 16215-25, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25934389

RESUMO

Cohesin-dockerin interactions orchestrate the assembly of one of nature's most elaborate multienzyme complexes, the cellulosome. Cellulosomes are produced exclusively by anaerobic microbes and mediate highly efficient hydrolysis of plant structural polysaccharides, such as cellulose and hemicellulose. In the canonical model of cellulosome assembly, type I dockerin modules of the enzymes bind to reiterated type I cohesin modules of a primary scaffoldin. Each type I dockerin contains two highly conserved cohesin-binding sites, which confer quaternary flexibility to the multienzyme complex. The scaffoldin also bears a type II dockerin that anchors the entire complex to the cell surface by binding type II cohesins of anchoring scaffoldins. In Bacteroides cellulosolvens, however, the organization of the cohesin-dockerin types is reversed, whereby type II cohesin-dockerin pairs integrate the enzymes into the primary scaffoldin, and type I modules mediate cellulosome attachment to an anchoring scaffoldin. Here, we report the crystal structure of a type I cohesin from B. cellulosolvens anchoring scaffoldin ScaB to 1.84-Å resolution. The structure resembles other type I cohesins, and the putative dockerin-binding site, centered at ß-strands 3, 5, and 6, is likely to be conserved in other B. cellulosolvens type I cohesins. Combined computational modeling, mutagenesis, and affinity-based binding studies revealed similar hydrogen-bonding networks between putative Ser/Asp recognition residues in the dockerin at positions 11/12 and 45/46, suggesting that a dual-binding mode is not exclusive to the integration of enzymes into primary cellulosomes but can also characterize polycellulosome assembly and cell-surface attachment. This general approach may provide valuable structural information of the cohesin-dockerin interface, in lieu of a definitive crystal structure.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacteroides/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Mutação , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Bacteroides/química , Bacteroides/genética , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Cristalografia por Raios X , Cinética , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Coesinas
14.
Parasitol Res ; 115(10): 3683-8, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27354113

RESUMO

Rhipicephalus microplus is an important tick in tropical regions due to the high economic losses caused by its parasitism. Metarhizium anisopliae and Beauveria bassiana are well-known entomopathogenic fungi that can afflict R. microplus ticks. The development of new targets and strategies to control this parasite can be driven by studies of this tick's physiology. Recently, it was reported that when exposed to adverse physiological conditions, ticks can activate fermentative pathways, indicating transition from aerobic to anaerobic metabolism. Nevertheless, the precise mechanism by which entomopathogenic fungi influence R. microplus metabolism has not been clarified, limiting understanding of the tick-fungus association. Thus, the present study aimed to evaluate the effect of infection of ticks by M. anisopliae and B. bassiana on the amount of selected carboxylic acids present in the hemolymph, enabling increased understanding of changes previously reported. The results showed preservation in the concentrations of oxalic, lactic, and pyruvic acids in the hemolymph 24 and 48 h after dropping from cattle; while there were variations in the concentration of these carboxylic acids after infection of female ticks to M. anisopliae and B. bassiana. Significant increases were observed in the concentration of oxalic and lactic acids and significant reduction of pyruvic acid for both observation times (24 and 48 h) after infection by entomopathogenic fungi. These results indicate that B. bassiana and M. anisopliae infection alters the basal metabolism of R. microplus females, resulting in the activation of fermentative pathways.


Assuntos
Beauveria/fisiologia , Doenças dos Bovinos/parasitologia , Metarhizium/fisiologia , Controle Biológico de Vetores/métodos , Rhipicephalus/metabolismo , Animais , Bovinos , Besouros , Feminino , Oxirredução , Rhipicephalus/microbiologia
15.
J Med Syst ; 40(11): 243, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27686222

RESUMO

High Angular Resolution Diffusion Imaging (HARDI) is a type of brain imaging that collects a very large amount of data, and if many subjects are considered then it amounts to a big data framework (e.g., the human connectome project has 20 Terabytes of data). HARDI is also becoming increasingly relevant for clinical settings (e.g., detecting early cerebral ischemic changes in acute stroke, and in pre-clinical assessment of white matter-WM anatomy using tractography). Thus, this method is becoming a routine assessment in clinical settings. In such settings, the computation time is critical, and finding forms of reducing the processing time in high computation processes such as Diffusion Spectrum Imaging (DSI), a form of HARDI data, is very relevant to increase data-processing speed. Here we analyze a method for reducing the computation time of the dMRI-based axonal orientation distribution function h by using Monte Carlo sampling-based methods for voxel selection. Results evidenced a robust reduction in required data sampling of about 50 % without losing signal's quality. Moreover, we show that the convergence to the correct value in this type of Monte Carlo HARDI/DSI data-processing has a linear improvement in data-processing speed of the ODF determination. Although further improvements are needed, our results represent a promissory step for future processing time reduction in big data.


Assuntos
Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Humanos , Método de Monte Carlo
16.
Eur J Appl Physiol ; 114(8): 1749-55, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24840857

RESUMO

PURPOSE: To investigate the effect of creatine (CR) supplementation on the acute interference induced by aerobic exercise on subsequent maximum dynamic strength (1RM) and strength endurance (SE, total number of repetitions) performance. METHODS: Thirty-two recreationally strength-trained men were submitted to a graded exercise test to determine maximal oxygen consumption (VO2max: 41.56 ± 5.24 ml kg(-1) min(-1)), anaerobic threshold velocity (ATv: 8.3 ± 1.18 km h(-1)), and baseline performance (control) on the 1RM and SE (4 × 80 % 1RM to failure) tests. After the control tests, participants were randomly assigned to either a CR (20 g day(-1) for 7 days followed by 5 g day(-1) throughout the study) or a placebo (PL-dextrose) group, and then completed 4 experimental sessions, consisting of a 5-km run on a treadmill either continuously (90 % ATv) or intermittently (1:1 min at vVO2max) followed by either a leg- or bench-press SE/1RM test. RESULTS: CR was able to maintain the leg-press SE performance after the intermittent aerobic exercise when compared with C (p > 0.05). On the other hand, the PL group showed a significant decrease in leg-press SE (p ≤ 0.05). CR supplementation significantly increased bench-press SE after both aerobic exercise modes, while the bench-press SE was not affected by either mode of aerobic exercise in the PL group. Although small increases in 1RM were observed after either continuous (bench press and leg press) or intermittent (bench press) aerobic exercise in the CR group, they were within the range of variability of the measurement. The PL group only maintained their 1RM. CONCLUSIONS: In conclusion, the acute interference effect on strength performance observed in concurrent exercise may be counteracted by CR supplementation.


Assuntos
Limiar Anaeróbio/efeitos dos fármacos , Creatina/farmacologia , Tolerância ao Exercício/efeitos dos fármacos , Exercício Físico , Adulto , Creatina/administração & dosagem , Suplementos Nutricionais , Humanos , Masculino
17.
Molecules ; 19(10): 16851-60, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25338176

RESUMO

The present study aimed to evaluate the volatiles profile of red mombin (Spondias purpurea) pulp and its powder produced by spray-drying (SD) as an example to show utility of headspace solid-phase microextraction (HS-SPME) in the analysis of parameters such as the quality and stability of fruit products. Volatiles profiles of the pulp were identified by gas chromatography-mass spectrometry (GC-MS), quantified by gas chromatography-flame ionization detector (GC-FID) and compared to the profile of the powder stored at 0, 60 and 120 days in plastic (PP) or laminated packages (LP). The results showed that the technique was able to identify 36 compounds in the red mombin pulp, 17 out of which have been described for the first time in this fruit, showing that red mombin fresh pulp appears to be unique in terms of volatiles composition. However, only 24 compounds were detected in the powder. This decrease is highly correlated (r2 = 0.99), at least for the majority of compounds, to the degree of volatility of compounds. Furthermore, the powder stored in PP or LP showed no statistical differences in the amounts of its components for a period of 120 days of storage. Finally, this work shows how HS-SPME analysis can be a valuable tool to assess the quality and stability of fruit products.


Assuntos
Anacardiaceae/química , Ionização de Chama/métodos , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação
18.
Nucl Med Mol Imaging ; 58(1): 9-24, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38261899

RESUMO

Purpose: 2-[18F]FDG PET/CT plays an important role in the management of pulmonary nodules. Convolutional neural networks (CNNs) automatically learn features from images and have the potential to improve the discrimination between malignant and benign pulmonary nodules. The purpose of this study was to develop and validate a CNN model for classification of pulmonary nodules from 2-[18F]FDG PET images. Methods: One hundred thirteen participants were retrospectively selected. One nodule per participant. The 2-[18F]FDG PET images were preprocessed and annotated with the reference standard. The deep learning experiment entailed random data splitting in five sets. A test set was held out for evaluation of the final model. Four-fold cross-validation was performed from the remaining sets for training and evaluating a set of candidate models and for selecting the final model. Models of three types of 3D CNNs architectures were trained from random weight initialization (Stacked 3D CNN, VGG-like and Inception-v2-like models) both in original and augmented datasets. Transfer learning, from ImageNet with ResNet-50, was also used. Results: The final model (Stacked 3D CNN model) obtained an area under the ROC curve of 0.8385 (95% CI: 0.6455-1.0000) in the test set. The model had a sensibility of 80.00%, a specificity of 69.23% and an accuracy of 73.91%, in the test set, for an optimised decision threshold that assigns a higher cost to false negatives. Conclusion: A 3D CNN model was effective at distinguishing benign from malignant pulmonary nodules in 2-[18F]FDG PET images. Supplementary Information: The online version contains supplementary material available at 10.1007/s13139-023-00821-6.

19.
Clin Nucl Med ; 49(4): e179-e181, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350093

RESUMO

ABSTRACT: 99m Tc-PYP/DPD/HDMP cardiac scintigraphy has a pivotal role in the diagnosis of ATTR cardiac amyloidosis. The combined findings of a Perugini visual score of 2 or 3 in the scan and the absence of monoclonal proteins in blood and urine are highly specific for the diagnosis of ATTR cardiac amyloidosis without a tissue biopsy. We report a case of mitral annular and valve calcification accurately identified in the SPECT/CT, but which could be misinterpreted as ATTR cardiac amyloidosis if only acquiring planar and SPECT images.


Assuntos
Amiloidose , Calcinose , Humanos , Valva Mitral/diagnóstico por imagem , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada de Emissão de Fóton Único , Cintilografia , Amiloidose/diagnóstico por imagem
20.
Heliyon ; 10(12): e32704, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988577

RESUMO

Chlorella vulgaris is a microalga rich in proteins with potential applications in food and feed industries. However, the presence of a cellulose-containing cell wall, which is a major barrier to protein extraction, together with fibroproteinaceous complexes, limits the bioaccessibility of nutritional and bioactive proteins and peptides from C. vulgaris biomass. Therefore, this study aimed to evaluate the effect of different mechanical/physical pre-treatments (bead milling, extrusion, freeze-drying, heating, microwave and sonication) combined or not with enzymatic treatments (commercial trypsin and pancreatin) on protein extraction and peptide formation from a C. vulgaris suspension. The amount of total protein and peptides released to the supernatant was quantified by Bradford and o-phthaldialdehyde assays, respectively. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis was used to analyse the extracted protein fractions. The results showed that extrusion caused a 3-fold increase in total peptides (p < 0.001) compared to no-pretreatment, and trypsin increased peptides formed in bead-milled (p = 0.020) and freeze-dried (p = 0.021) microalga relative to those pre-treatments alone. Some pre-treatments, such as bead milling and microwave, were effective in releasing specific protein fractions, particularly those from 32 to 40 kDa (up to 1.2-fold), compared to control. Pancreatin combined with bead milling decreased 32 to 40 kDa- and 26 kDa-protein fractions (p < 0.010) compared with the sole use of mechanical treatment, whereas the same enzyme mixture associated with microwave produced a similar result for 26 kDa-protein fraction (p = 0.023). Pancreatin also effectively reduced the total protein fraction released after pre-treatment with sonication (p = 0.013). These findings suggest that combining different pre-treatments and enzymatic treatments could improve protein extraction from C. vulgaris biomass, providing a useful approach for the development of sustainable protein sources. The present results highlight the need for further studies to assess the efficacy of extrusion in improving the bioaccessibility of C. vulgaris proteins in monogastric animals' diets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA