Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chimia (Aarau) ; 78(5): 313-319, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38822774

RESUMO

Operando spectroscopy combines the in situ determination of material structure by spectroscopy/diffraction techniques with the measurement of material performance, which is conversion/selectivity in the field of heterogeneous catalysis. A central question in operando spectroscopy is whether the signatures visible by the characterization methods are responsible for catalyst performance. Individual analytical methods can provide useful information, but their combination (multi-technique approach) is essential to obtain a complete perspective on molecular reaction mechanisms. This approach must be coupled to experimental protocols and mathematical algorithms enabling the ability to disentangle the contribution of the active structure from the unresponsive one. Here, we report an account with examples from our own research activities in catalysis science.

2.
Molecules ; 26(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34770915

RESUMO

Co-precipitated Ni-Mg-Al hydrotalcite-derived catalyst promoted with vanadium were synthesized with different V loadings (0-4 wt%) and studied in CO2 methanation. The promotion with V significantly changes textural properties (specific surface area and mesoporosity) and improves the dispersion of nickel. Moreover, the vanadium promotion strongly influences the surface basicity by increasing the total number of basic sites. An optimal loading of 2 wt% leads to the highest activity in CO2 methanation, which is directly correlated with specific surface area, as well as the basic properties of the studied catalysts.

3.
Phys Chem Chem Phys ; 22(34): 18798-18805, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32440668

RESUMO

Substitution of critical raw materials such as platinum group metals in automotive catalysts is challenging. In this work we prepared a nanocomposite in which CuO nanoparticles are highly dispersed on a La0.5Sr0.5CoO3 perovskite-type oxide. The behaviour and reactivity under three way catalyst conditions was monitored by operando time-resolved high-energy X-ray diffraction under oscillating rich/lean feed. The reducing environment converted CuO into Cu(0) in a two step process: Cu(ii) to Cu(i) and to Cu(0), while the perovskite evolved to an oxygen deficient brownmillerite phase. These structural transformations are shown to be crucial for catalytic activity. The in situ generated Cu(0)/Cu(i)/brownmillerite nanocomposite is active for NO reduction above 300 °C, reaching 90% NO conversion at 450 °C. The effect of feed composition on the diffraction patterns was studied by Rietveld refinement in order to rationalize the experimental observations under TWC conditions.

4.
J Phys Chem A ; 124(48): 10075-10081, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33203210

RESUMO

An important property of heterogeneous catalysts is the size distribution of the catalytically active phase. This is typically obtained form a long list of particles sizes (manually) compiled from electron micrographs. These raw data are then represented as histogram to approximate the underlying continuous distribution. Selecting the proper bin width, w, for the histogram is important as one has to balance resolution with statistical significance of the bin count in each bin. For most published particle size distributions, the selection criterion for w is not reported transparently. In this contribution, it is demonstrated how operator's bias can be avoided by using estimators for w that are based on the raw data only. First, synthetic data are analyzed to illustrate the importance of selecting a proper value for w. Then a survey of published data is presented which reveals that the values for the bin width w was chosen too large in many cases. By using statistically founded bin width estimators not only is operator's bias avoided but also hidden features in the distribution are sometimes revealed; in one case, a distinct bimodal distribution was missed in the original report. Finally, a work-flow is suggested which avoids operator's bias to generate particles size distributions from a list of experimentally determined particle sizes.

5.
J Microsc ; 271(1): 62-68, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29603229

RESUMO

A python module (HRTEMFringeAnalyzer) is reported to evaluate the local crystallinity of samples from high-resolution transmission electron microscopy images in a mostly automated fashion. The user only selects the size of a square analyser window and a step size which translates the window in the micrograph. Together they define the resolution of the results obtained. Regions where fringe patterns are visible are identified and their lattice spacing d and direction ϕ as well as the corresponding mean errors σ determined. 1/σd is proportional to the coherence length of the structure, whereas σφ is a measure of how well the direction of the fringes is defined. Maps of these four indicators are computed. The performance of the program is demonstrated on two very different samples: ill-crystalline carbon deposits on a coked Ni/LFNO (reduced LaFe0.8 Ni0.2 O3±Î´) catalyst and well-crystallized nanoparticles of zinc doped ceria. In the latter case, the automatic segmentation of large aggregates into individual crystalline domains is achieved by ϕ maps.

6.
Rev Sci Instrum ; 78(3): 034102, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17411197

RESUMO

An experiment is presented to study homogeneous nucleation and the subsequent droplet growth at high temperatures and high pressures in a compact setup that does not use moving parts. Nucleation and condensation are induced in an adiabatic, stationary expansion of the vapor and an inert carrier gas through a Laval nozzle. The adiabatic expansion is driven against atmospheric pressure by pressurized inert gas its mass flow carefully controlled. This allows us to avoid large pumps or vacuum storage tanks. Because we eventually want to study the homogeneous nucleation and condensation of zinc, the use of carefully chosen materials is required that can withstand pressures of up to 10(6) Pa resulting from mass flow rates of up to 600 l(N) min(-1) and temperatures up to 1200 K in the presence of highly corrosive zinc vapor. To observe the formation of droplets a laser beam propagates along the axis of the nozzle and the light scattered by the droplets is detected perpendicularly to the nozzle axis. An ICCD camera allows to record the scattered light through fused silica windows in the diverging part of the nozzle spatially resolved and to detect nucleation and condensation coherently in a single exposure. For the data analysis, a model is needed to describe the isentropic core part of the flow along the nozzle axis. The model must incorporate the laws of fluid dynamics, the nucleation and condensation process, and has to predict the size distribution of the particles created (PSD) at every position along the nozzle axis. Assuming Rayleigh scattering, the intensity of the scattered light can then be calculated from the second moment of the PSD.

7.
Rev Sci Instrum ; 88(9): 095112, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28964240

RESUMO

The design, implementation, calibration, and assessment of double modulation pyrometry to measure surface temperatures of radiatively heated samples in our 1 kW imaging furnace is presented. The method requires that the intensity of the external radiation can be modulated. This was achieved by a rotating blade mounted parallel to the optical axis of the imaging furnace. Double modulation pyrometry independently measures the external radiation reflected by the sample as well as the sum of thermal and reflected radiation and extracts the thermal emission as the difference of these signals. Thus a two-step calibration is required: First, the relative gains of the measured signals are equalized and then a temperature calibration is performed. For the latter, we transfer the calibration from a calibrated solar blind pyrometer that operates at a different wavelength. We demonstrate that the worst case systematic error associated with this procedure is about 300 K but becomes negligible if a reasonable estimate of the sample's emissivity is used. An analysis of the influence of the uncertainties in the calibration coefficients reveals that one (out of the five) coefficient contributes almost 50% to the final temperature error. On a low emission sample like platinum, the lower detection limit is around 1700 K and the accuracy typically about 20 K. Note that these moderate specifications are specific for the use of double modulation pyrometry at the imaging furnace. It is mainly caused by the difficulty to achieve and maintain good overlap of the hot zone with a diameter of about 3 mm Full Width at Half Height and the measurement spot both of which are of similar size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA