RESUMO
For more than 15 years, integrative passive sampling has been successfully used for monitoring contaminants in water, but no passive sampling device exists for strongly polar organic compounds, such as glyphosate. We thus propose a polar organic chemical integrative sampler (POCIS)-like tool dedicated to glyphosate and its main degradation product aminomethylphosphonic acid (AMPA), and describe the laboratory calibration of such a tool for calculating the sampling rates of glyphosate and AMPA. This passive sampler consists of a POCIS with molecularly imprinted polymer as a receiving phase and a polyethersulfone diffusion membrane. The calibration experiment for the POCIS was conducted for 35 days in a continuous water-flow-through exposure system. The calibration results show that the sampling rates are 111 and 122 mL day-1 for glyphosate and AMPA respectively, highlighting the potential interest in and the applicability of this method for environmental monitoring. The influence of membrane porosity on the glyphosate sampling rate was also tested. Graphical Abstract á .
RESUMO
The worldwide and intensive use of phytosanitary compounds results in environmental and food contamination by chemical residues. Human exposure to multiple pesticide residues is a major health issue. Considering that the liver is not only the main organ for metabolizing pesticides but also a major target of toxicities induced by xenobiotics, we studied the effects of a mixture of 7 pesticides (chlorpyrifos-ethyl, dimethoate, diazinon, iprodione, imazalil, maneb, mancozeb) often detected in food samples. Effects of the mixture was investigated using metabolically competent HepaRG cells and human hepatocytes in primary culture. We report the strong cytotoxicity of the pesticide mixture towards hepatocytes-like HepaRG cells and human hepatocytes upon acute and chronic exposures at low concentrations extrapolated from the Acceptable Daily Intake (ADI) of each compound. Unexpectedly, we demonstrated that the manganese (Mn)-containing dithiocarbamates (DTCs) maneb and mancozeb were solely responsible for the cytotoxicity induced by the mixture. The mechanism of cell death involved the induction of oxidative stress, which led to cell death by intrinsic apoptosis involving caspases 3 and 9. Importantly, this cytotoxic effect was found only in cells metabolizing these pesticides. Herein, we unveil a novel mechanism of toxicity of the Mn-containing DTCs maneb and mancozeb through their metabolization in hepatocytes generating the main metabolite ethylene thiourea (ETU) and the release of Mn leading to intracellular Mn overload and depletion in zinc (Zn). Alteration of the Mn and Zn homeostasis provokes the oxidative stress and the induction of apoptosis, which can be prevented by Zn supplementation. Our data demonstrate the hepatotoxicity of Mn-containing fungicides at very low doses and unveil their adverse effect in disrupting Mn and Zn homeostasis and triggering oxidative stress in human hepatocytes.
Assuntos
Fungicidas Industriais , Maneb , Praguicidas , Zineb , Humanos , Maneb/toxicidade , Manganês/toxicidade , Manganês/metabolismo , Praguicidas/toxicidade , Zineb/toxicidade , Fungicidas Industriais/toxicidade , Fungicidas Industriais/análise , Apoptose , Estresse Oxidativo , Zinco/metabolismo , Hepatócitos/metabolismo , Etilenos , HomeostaseRESUMO
Polycystic ovarian syndrome (PCOS), frequently associated to obesity, is the main reproductive disorder in women in age to procreate. Some evidence suggests that pesticides can result in alterations of the female reproductive system, including polycystic ovary syndrome (PCOS). Here, we detected two fungicides, Tebuconazole (Tb) and Epoxiconazole (Epox) in the soils and waters of French area. Our hypothesis is that these two triazoles could be associated to the etiology of PCOS. We used the human KGN cell line and primary human granulosa cells (hGCs) from different group of patients: normal weight non PCOS (NW), normal weight PCOS (PCOS NW), obese (obese) and obese PCOS (PCOS obese). We exposed in vitro these cells to Tb and Epox from 0 up to 10 mM for 24 and 48 h and analysed cell viability and steroidogenesis. In hGCs NW, cell viability was reduced from 12.5 µM for Tb and 75 µM for Epox. In hGCs NW, Epox decreased progesterone (Pg) and estradiol (E2) secretions and inhibited STAR, HSD3B and CYP19A1 mRNA expressions from 25 µM and increased AHR mRNA expression from 75 µM. Tb exposure also reduced steroid secretion and STAR and CYP19A1 mRNA expressions and increased AHR mRNA expression but at cytotoxic concentrations. Silencing of AHR in KGN cells reduced inhibitory effects of Tb and Epox on steroid secretion. Tb and Epox exposure decreased more steroid secretion in hGCs from obese, PCOS NW and PCOS obese groups than in NW group. Moreover, we found a higher gene expression of AHR within these three groups. Taken together, both Epox and Tb reduced steroidogenesis in hGCs through partly AHR and Tb was more cytotoxic than Epox. These triazoles alter more strongly PCOS and/or obese hGCs suggesting that human with reproductive disorders are more sensitive to triazoles exposure.
RESUMO
The Watch List (WL) is a monitoring program under the European Water Framework Directive (WFD) to obtain high-quality Union-wide monitoring data on potential water pollutants for which scarce monitoring data or data of insufficient quality are available. The main purpose of the WL data collection is to determine if the substances pose a risk to the aquatic environment at EU level and subsequently to decide whether a threshold, the Environmental Quality Standards (EQS) should be set for them and, potentially to be listed as priority substance in the WFD. The first WL was established in 2015 and contained 10 individual or groups of substances while the 4th WL was launched in 2022. The results of monitoring the substances of the first WL showed that some countries had difficulties to reach an analytical Limit of Quantification (LOQ) below or equal to the Predicted No-Effect Concentrations (PNEC) or EQS. The Joint Research Centre (JRC) of the European Commission (EC) organised a series of workshops to support the EU Member States (MS) and their activities under the WFD. Sharing the knowledge among the Member States on the analytical methods is important to deliver good data quality. The outcome and the discussion engaged with the experts are described in this paper, and in addition a literature review of the most important publications on the analysis of 17-alpha-ethinylestradiol (EE2), amoxicillin, ciprofloxacin, metaflumizone, fipronil, metformin, and guanylurea from the last years is presented.
RESUMO
Triazoles are the main components of fungicides used in conventional agriculture. Some data suggests that they may be endocrine disruptors. Here, we found five triazoles, prothioconazole, metconazole, difenoconazole, tetraconazole, and cyproconazole, in soil or water from the Centre-Val de Loire region of France. We then studied their effects from 0.001 µM to 1000 µM for 48 h on the steroidogenesis and cytotoxicity of ovarian cells from patients in this region and the human granulosa line KGN. In addition, the expression of the aryl hydrocarbon receptor (AHR) nuclear receptor in KGN cells was studied. Overall, all triazoles reduced the secretion of progesterone, estradiol, or both at doses that were non-cytotoxic but higher than those found in the environment. This was mainly associated, depending on the triazole, with a decrease in the expression of CYP51, STAR, CYP11A1, CYP19A1, or HSD3B proteins, or a combination thereof, in hGCs and KGN cells and an increase in AHR in KGN cells.
Assuntos
Fungicidas Industriais , Feminino , Humanos , Fungicidas Industriais/toxicidade , Células da Granulosa , Estradiol/metabolismo , Progesterona/metabolismo , Triazóis/toxicidadeRESUMO
We studied the removal of 61 emerging micropollutants, including illicit drugs, in a biofilter wastewater treatment plant located in the French Indies (Martinique). Raw wastewater concentrations were the highest for paracetamol followed by caffeine, naproxen, ibuprofen, its metabolite 2-hydroxyibuprofen, atenolol, ketoprofen, furosemide, methylparaben, cocaine, benzoylecgonine, and 11-nor-delta-9-carboxytetrahydrocannabinol (THC-COOH). The calculated removals were better than those reported in the literature, while the cumulative removal efficacy (i.e., removal of the total mass load) was estimated to be 92 ± 4%. However, this good performance may be partly explained by the removal of paracetamol (also named acetaminophen) and caffeine, which represented 86.4% of the total mass load. Our results point to the adsorption of some molecules on sludge, thus raising the question about local soil pollution from sludge spreading.
Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Purificação da Água , Martinica , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análiseRESUMO
Pesticides occur in groundwater as a result of agricultural activity. Their monitoring under the Water Framework Directive is based on only a few spot-sampling measurements per year despite their temporal variability. Passive sampling, which was successfully tested in surface water to provide a more representative assessment of contamination, could be applied to groundwater for a better definition of its contamination. However, few reliable calibration data under low water flow are available. The objective of our study thus consisted in determining sampling rates by two types of passive samplers, a POCIS (polar organic chemical integrative sampler) for polar pesticides, and a POCIS-MIP sampler based on a receiving phase of molecular imprinted polymers, specific for AMPA and glyphosate under low flow conditions as exist in groundwater. To our knowledge, this is the first time that sampling rates (sampling rate represents the volume of water from which the analyte is quantitatively extracted by the sampler per unit time) are estimated for groundwater applications. Our calibrations took place in an experimental pilot filled with groundwater and with low water flow (a few metres per day). Pesticide uptake in POCIS showed good linearity, with up to 28 days before reaching equilibrium. Two types of accumulation in POCIS were noted (a linear pattern up to 28 days, and after a time lag of 7 to 14 days). Sampling rates for 38 compounds were calculated and compared with those available in the literature or obtained previously under laboratory conditions. The values obtained were lower by a factor 1 to 14 than those estimated under stirring conditions in the literature, whereas water flow velocity (m s-1) differed by a factor of 2000 to 10,000.
Assuntos
Água Subterrânea , Praguicidas/análise , Poluentes Químicos da Água/análise , Calibragem , Monitoramento AmbientalRESUMO
Isoproturon-imprinted polypyrrole films were electrochemically synthesized onto glassy carbon (GC) electrodes in an ethanol/aqueous solution of pyrrole as a monomer, isoproturon as a template molecule and LiClO4 as supporting electrolyte. Electropolymerization was performed by cyclic voltammetry and chronoamperometry. The isoproturon template molecules were successfully trapped in the polypyrrole film where they created artificial recognition cavities. After the electrochemical extraction of the template, the polypyrrole film acted as a molecularly imprinted polymer (MIP) for the selective recognition of isoproturon whereas the non-imprinted polymer (NIP) film, made in the same conditions except for the presence of isoproturon, did not exhibit any interaction. The MIP and NIP films were characterized by cyclic voltammetry in the presence of redox probes and the thickness of the polymer layers was estimated by EQCM (Electrochemical Quartz Crystal Microbalance) and calculated using Faraday's law. The isoproturon-imprinted polypyrrole films were found to selectively detect isoproturon even in the presence of the interferents carbendazim and carbamazepine. Its limit of detection (LOD) in milli Q water, achieved via square wave voltammetry was as low as 0.5⯵gâ¯L-1, whereas in real water samples it was found to be 2.2⯵gâ¯L-1.
RESUMO
Chlordecone is an organochlorine insecticide that was intensively used in the French West Indies to control the black weevil Cosmopolites sordidus in bananas. Its usage, however, resulted in the widespread pollution of the environment with heavy sanitary and social consequences, leading to population exposure mainly through food. Time-consuming and costly programs have been used to tackle this problem, and this study proposes to use the emerging sewage epidemiology approach to evaluate the current situation and the effect of such programs. The results determine the maximal value of chlordecone consumption, and considering the detection limit of the analytical protocol, the wastewater was found to have undetectable amounts of chlordecone. This value confirms the efficiency of the population protection strategy provided by French sanitary and environmental authorities. It also bolsters the usage of sewage epidemiology in pesticide assessment and relativizes the chlordecone risk compared to other chemicals of lesser concern.
Assuntos
Clordecona/análise , Exposição Ambiental/análise , Política de Saúde , Inseticidas/análise , Esgotos/química , Águas Residuárias/química , Animais , Humanos , Musa/crescimento & desenvolvimento , Gorgulhos/efeitos dos fármacos , Índias OcidentaisRESUMO
A commercial molecularly imprinted polymer (MIP) dedicated to glyphosate (GLY) and its main metabolite, aminomethylphosphonic acid (AMPA), was lately assessed as "POCIS-like" sampler on mineral water. The obtained results were encouraging with 111 and 122 mL day-1 as sampling rates for GLY and AMPA, respectively. Therefore, before applying this passive sampler to environmental waters, the commercial phase was tested on different water matrices as a solid-phase extraction (SPE) device. The SPE protocol was carried on 250 mg of MIP with the following three steps: conditioning by Milli-Q water, loading of the sample (15 mL), and elution of the analytes by 4 mL 0.1 M HCl that were evaporated to dryness and recovered in 15 mL of the suitable solvent for analysis. This protocol was first applied to mineral water spiked by GLY and AMPA at environmental concentration levels (25-750 ng L-1). Analyses were carried out by ultra-performance liquid chromatography hyphenated to tandem mass after derivatization of GLY and AMPA by 9-fluorenylmethylchloroformate. The linear correlation between concentrations measured with and without SPE on MIP was proved.Furthermore, other extractions showed that high concentrations of metal ion interferents (lead(II), cadmium(II), and zinc(II)) in groundwaters did not reduce SPE performance of the MIP.Then, concentration assays were undertaken and brought noteworthy results, such as the recovery of 80% GLY and AMPA from groundwater spiked at 10 ng L-1 and concentrated 100 times. For this purpose, ion exclusion chromatography hyphenated to mass was applied without previous derivatization of the analytes. The same concentration factor and analytical method were applied to 100 ng L-1 spiked sea water with recoveries of 96% for GLY and 121% for AMPA.
Assuntos
Polímeros/química , Espectrometria de Massas em Tandem , Fluorenos , Glicina/análogos & derivados , Impressão Molecular , Extração em Fase Sólida , GlifosatoRESUMO
Three commercial granular activated carbons (GACs) were studied at laboratory scale with a view to the combined adsorption and biodegradation of PCBs in aquatic sediment. The three GACs, with contrasting physico-chemical characteristics, all show a high adsorption of PCBs and are thus capable of reducing aqueous pollutant concentrations. After a one-month incubation with 'Aroclor 1242'-spiked sediment, the three GACs were each colonized by a multispecies biofilm, although with different amounts of attached bacterial biomass and significantly distinct genetic bacterial communities; interestingly, the highest bacterial biomass was attached to the microporous vegetable GAC. The multispecies biofilms developed on the three GACs were all predominantly composed of Proteobacteria, especially the ß-, γ- and δ- subclasses, Chloroflexi and Acidobacteria, with genera previously found in environments containing PCBs or biphenyls, or able to perform cometabolic and direct PCB degradation. After an eight-month incubation under aerobic conditions, it was only the vegetable Picabiol GAC, with its low microporous volume, high total surface area and acidic property, that showed a significant (21%) reduction of tri- through penta-CB. Our results suggest that PCB bio-transformation by the bacterial community attached to the GAC is influenced by GAC's physico-chemical characteristics. Thus, a properly selected GAC could effectively be used to a) sequestrate and concentrate PCB from contaminated aquatic sediment and b) act as a support for efficient PCB degradation by an autochthonous bacterial biofilm.
Assuntos
Arocloros/metabolismo , Biodegradação Ambiental , Carbono/química , Sedimentos Geológicos/microbiologia , Poluentes Químicos da Água/química , Adsorção , Arocloros/química , Bactérias/metabolismo , Sedimentos Geológicos/químicaRESUMO
Polar organic chemical integrative samplers (POCISs) for the monitoring of polar pesticides in groundwater were tested on two sites in order to evaluate their applicability by comparison with the spot-sampling approach. This preliminary study shows that, as in surface water, POCIS is a useful tool, especially for the screening of substances at low concentration levels that are not detected by laboratory analysis of spot samples. For quantitative results, a rough estimation is obtained. The challenge is now to define the required water-flow conditions for a relevant quantification of pesticides in groundwater and to establish more representative sampling rates for groundwater.