Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Environ Manage ; 344: 118506, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37418920

RESUMO

One of the impacts related to mining dam failures is the change in water quality downstream of the rupture and a knowledge gap is observed in terms of methodologies aimed at the prognosis of impact in water abstractions, a vulnerability that can be identified before a rupture event. Thus, the present work aims to describe a novel methodological proposal, not currently considered by control agencies, of a standard protocol that enables a comprehensive prognosis of the impacts on water quality impact in scenarios of dam failure. Initially, extensive bibliographic research was carried out on the main disruptions events since 1965 intended to better comprehend the impacts on water quality and to identify mitigatory actions proposed by the time. The information provided a framework to propose a conceptual model for the prognosis of water abstractions, with the suggestion of software and studies to comprehend the different scenarios in the event of dam failure. A protocol was prepared to obtain information on potentially affected inhabitants and a multicriteria analysis was developed using the Geographic Information System (GIS) to suggest the employment of preventive and corrective actions. The methodology was demonstrated in the Velhas River basin considering a hypothetical scenario of tailing dam failure. Changes in water quality would be observed in 274 km of its extension, mainly related to alterations in solids, metals, and metalloids' concentration, in addition to the impact on important water treatment plants. The map algebra and the results suggest the need for structuring actions in cases where the water abstraction is intended for human supply and in populations greater than 100,000 inhabitants. Populations smaller than these, or usages other than human supply, could be supplied by water tank trucks or mixed alternatives. The methodology pointed out the necessity for structuring supply actions with due notice, with the potential to prevent water shortages in scenarios of tailing dam failure and to complement the enterprise resource planning of mining companies.


Assuntos
Metais , Poluentes Químicos da Água , Humanos , Metais/análise , Rios , Qualidade da Água , Monitoramento Ambiental , Poluentes Químicos da Água/análise
2.
J Environ Manage ; 303: 114117, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838381

RESUMO

Membrane distillation is a well-established technology for non-volatile components retention, but the removal of volatile and semi-volatile substances in trace concentration, such as phenols derivates commonly found in surface waters, requires further comprehension. In this context, the direct contact membrane distillation (DCMD) performance was assessed for the retention of fifteen phenolic compounds in surface water by different operating conditions of temperature (40, 50, and 60 °C), feed concentration (3, 5, 7, and 10 µg L-1), and permeate recovery rate (30, 50 and 70%). Kruskal Wallis confirmed a significant difference (p < 0.05) between the global removal of phenolic compounds at different temperatures. The increase in temperature led to a reduction in all compound's removal. As expected, a positive correlation (rSpearman>0.8) between the compounds' volatility and their losses was observed. Regarding the feed concentration and the recovery rate, there was no statistical difference between the removal values obtained for the phenolic compounds. This indicates the DCMD strength for that application. However, a trend for flux decay was noticed as the recovery rate (RR) increased, confirmed by temporal trend analysis and Mann-Kendall tests, although the flux decay was relatively low (J/J0 = 0.89). Aiming for a greater removal and to avoid a reduction in process performance, it is recommended to work with 40 °C as feed temperature and a RR prior to the flux decay (RR<30%). Nonetheless, the technology was efficient and did not compromise the permeate quality with >90% efficiency in pollutants removal, even for higher temperatures and RR.


Assuntos
Destilação , Purificação da Água , Membranas , Membranas Artificiais , Fenóis
3.
Water Sci Technol ; 85(11): 3184-3195, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35704404

RESUMO

Granular sludge is a promising biotechnology to treat sewage contaminated with pharmaceuticals due to its increased toxicity resistance. In this context, this study evaluated the potential of Ca2+ as a granulation precursor and how pharmaceutical compounds (loratadine, prednisone, fluconazole, fenofibrate, betamethasone, 17α-ethinyl estradiol, and ketoprofen) affect granulation. Continuous and intermittent dosages of Ca2+ in the presence and absence of pharmaceuticals were evaluated. The results showed that intermittent addition of Ca2+ reduces the time for anaerobic sludge granulation, and pharmaceuticals presence did not impair granulation. 10% of the granules presented mean diameters greater than 2.11 mm within 93 days with intermittent Ca2+ dosage in the pharmaceuticals' presence. In contrast, no granules higher than 2.0 mm were observed with no precursor addition. The pharmaceuticals' toxicity may have created a stress condition for the microbial community, contributing to more EPS production and a greater potential for granulation. It was also verified that pharmaceuticals' presence did not decrease organic matter, total alkalinity, and volatile fatty acids removals. The 16S rRNA gene analysis revealed taxa resistance to recalcitrant compounds when pharmaceuticals were added. Besides, the efficiency of a granular sludge bioreactor (EGSB) was evaluated for pharmaceuticals removal, and betamethasone, fenofibrate, and prednisone were effectively removed.


Assuntos
Cálcio , Preparações Farmacêuticas , Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Betametasona , Reatores Biológicos/microbiologia , Cálcio/química , Fenofibrato , Preparações Farmacêuticas/química , Prednisona , RNA Ribossômico 16S , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos
4.
Water Sci Technol ; 79(2): 398-410, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30865611

RESUMO

In this study, commercial baker's yeast (Saccharomyces cerevisiae) was employed as a novel inoculum for a membrane bioreactor (MBRy). It was applied to landfill leachate (LFL) treatment to remove recalcitrant organic compounds as well as for the assimilation of recalcitrant compounds, since yeasts have a high ability to break such compounds down. The MBR was inoculated with 10 g L-1 of commercial baker's yeast and was operated at a hydraulic retention time of 48 h and pH of 3.5. The specific air demand based on the membrane area (SADm) was maintained at 0.6 m3 h-1 m-2. The MBRy achieved chemical oxygen demand (COD), color, NH3, and humic substances removal of 68, 79, 68, and 50%, respectively. Furthermore, the MBRy showed lower fouling potential, which can be attributed to the low extracellular polymeric substances production, as the formation of a cake layer was the major mechanism of membrane fouling. The work demonstrated that novel MBR is a promising technology for treating recalcitrant landfill leachate.


Assuntos
Reatores Biológicos/microbiologia , Saccharomyces cerevisiae/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Análise da Demanda Biológica de Oxigênio , Membranas Artificiais , Poluentes Químicos da Água/análise , Leveduras/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-29206081

RESUMO

Direct (UV) and hydrogen peroxide-assisted (UV/H2O2) photolysis were investigated in bench-scale for removing the organic compounds present in the electrodialysis reversal (EDR) brine from a refinery wastewater reclamation plant. In the UV/H2O2 experiments, a COD:H2O2 molar ratios of 1:1, 1:2 and 1:3 were tested by recirculating the brine in the UV reactor for 120 min. Results showed a significant reduction in UVA254, whereas no reduction was observed for chemical oxygen demand (COD), in the UV process, suggesting great cleavage but limited mineralization of the organic matter. UV/H2O2 with C:H2O2 ratio of 1:3 exhibited high efficiency in removing the organic matter (COD removal of 92% with an electrical energy per removal order (EEO) value of 22 kW h m-3). Although the EDR brine has high salinity, no strong scavenging effect of •OH was found in the water matrix due to the high concentration of anions, especially chloride and bicarbonate. Finally, UV/H2O2 with C:H2O2 ratio of 1:3 and residence time of 120 min is an efficient alternative for organic matter removal of EDR brine from refinery wastewater reclamation plant showing total capital cost (CapEx) estimated at US$ 369,653.00 and total operational cost (OpEx), at US$ 1.772 per cubic meter of effluent.


Assuntos
Peróxido de Hidrogênio/química , Compostos Orgânicos/isolamento & purificação , Petróleo , Sais/isolamento & purificação , Raios Ultravioleta , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Análise da Demanda Biológica de Oxigênio , Conservação dos Recursos Hídricos/métodos , Filtração/métodos , Humanos , Peróxido de Hidrogênio/farmacologia , Indústria de Petróleo e Gás/métodos , Oxirredução , Petróleo/análise , Fotólise , Salinidade , Instalações de Eliminação de Resíduos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação
6.
Bioprocess Biosyst Eng ; 40(12): 1839-1850, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28916959

RESUMO

This study aims to evaluate membrane bioreactor (MBR) performance in a pilot scale to treat petroleum refinery effluent, and has been primarily focused on (1) investigation of dynamics of organic matter removal; (2) characterization of membrane fouling under real hazardous events; (3) evaluation of the effect of fouling on membrane lifetime; and (4) estimate the membrane lifetime. The results have shown that the MBR was able to effectively reduce COD, NH3-N, turbidity, color, phenol and toxicity, and bring them to the levels required to meet disposal and non-potable water reuse standards. The FTIR results showed that organic matter was removed by biological oxidation and/or retained by adsorption in the biological sludge, or retention in the UF membrane, and that SMP was produced during the treatment. In terms of membrane permeability, the results showed that soluble fraction of mixed liquor contributed significantly to membrane fouling. And finally, considering the concept of lifetime based on permeability decline, a membrane lifetime of 7 years is expected.


Assuntos
Reatores Biológicos , Resíduos Industriais , Membranas Artificiais , Compostos Orgânicos/isolamento & purificação , Petróleo/análise , Poluentes Químicos da Água/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Artigo em Inglês | MEDLINE | ID: mdl-28328279

RESUMO

The purpose of this article is to characterize and compare the residual COD of raw landfill leachate and its low and high molecular weight fractions before and after aerobic degradation process. The low and high molecular weight fractions (<10 kDa and >10 kDa, respectively) were obtained by the use of an ultrafiltration cell. Samples of the fractions with molecular weights 10 kDa, as well as the raw leachate, were characterized in terms of COD, protein, carbohydrate and lipid concentration and by biodegradability test. The compound identification of all samples was carried out using gas chromatography coupled with mass spectrometry (GC/MS). The results show that the landfill leachate studied is constituted of approximately 60% of compounds with molecular weight <10 kDa. Approximately 80% of the compounds identified in the leachate had been degraded. This is an indication that most of the compounds that constitute the significant fraction of residual COD correspond to intermediate products and products of condensation of affluent compounds or had been generated during the degradation (SMP). Similar compounds were identified in all effluents of the degradation assay, suggesting the presence of SMP. These compounds, predominantly aliphatic and esters, are characterized by high molecular weight and probable refractory nature.


Assuntos
Compostos Orgânicos/análise , Compostos Orgânicos/química , Eliminação de Resíduos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Aerobiose , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Cromatografia Gasosa-Espectrometria de Massas , Peso Molecular , Ultrafiltração
8.
Artigo em Inglês | MEDLINE | ID: mdl-28910583

RESUMO

The startup process of a membrane bioreactor inoculated with yeast biomass (Saccharomyces cerevisiae) and used in the treatment of landfill leachate was evaluated. The yeast membrane bioreactor (MBRy) was inoculated with an exogenous inoculum, a granulated active dry commercial bakers' yeast. The MBRy was successfully started up with a progressive increase in the landfill leachate percentage in the MBRy feed and the use of Sabouraud Dextrose Broth. The membrane plays an important role in the startup phase because of its full biomass retention and removal of organic matter. MBRy is a suitable and promising process to treat recalcitrant landfill leachate. After the acclimation period, the COD and NH3 removal efficiency reached values of 72 ± 3% and 39 ± 2% respectively. MBRy shows a low membrane-fouling potential. The membrane fouling was influenced by soluble microbial products, extracellular polymeric substances, sludge particle size, and colloidal dissolved organic carbon.


Assuntos
Reatores Biológicos/microbiologia , Membranas Artificiais , Saccharomyces cerevisiae/crescimento & desenvolvimento , Esgotos/microbiologia , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Incrustação Biológica , Análise da Demanda Biológica de Oxigênio , Biomassa , Desenho de Equipamento , Modelos Teóricos
9.
Water Sci Technol ; 74(9): 2177-2184, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27842037

RESUMO

This article aims to evaluate membrane contactors capability to remove and recover ammonia from landfill leachate (LFL). A hydrophobic hollow fiber membrane module was used to achieve such purpose. A sulfuric acid diluted solution was used as extraction solution to speed up ammonia content removal. Several factors that have influence on ammonia removal and recovery capability such as ammonia solution pH, concentration of sulfuric acid solutions and flow rate of liquid phases have been examined. Microfiltration was the method used as pretreatment. The results have shown that membrane contactor operated with LFL (pH 10), 0.1 M acid solution and liquid flow rate up to 0.5 L min-1 achieved 99.9% of ammonia removal, which corresponds to 79.1% of ammonia recovery from the extraction solution, and it is capable to produce highly purified ammonium sulfate solutions (41.2%, wt wt-1) to be used as fertilizer. The concentration of total ammonia nitrogen (TAN) in the residual LFL complies with Brazilian law requirements of 20.0 mg L-1 of TAN, regarding the disposal of effluents.


Assuntos
Amônia/química , Poluentes Químicos da Água/química , Brasil , Filtração/instrumentação , Filtração/métodos , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Nitrogênio
10.
Water Sci Technol ; 74(2): 367-74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27438241

RESUMO

This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (<88%) when conducted in pH values higher than 1. Thus, sequential use of NF and RO was proved to be a promising treatment for sulfuric acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water.


Assuntos
Osmose , Reciclagem , Ultrafiltração/métodos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Água/análise , Ouro , Resíduos Industriais , Metais/análise , Mineração , Ácidos Sulfúricos/análise , Eliminação de Resíduos Líquidos/instrumentação , Purificação da Água
11.
Water Sci Technol ; 73(6): 1434-41, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27003086

RESUMO

The purpose of this article was to evaluate and establish microfiltration (MF) operating conditions for vinasse (ethanol industries wastewater also known as stillage, slop, distillery effluent or dunder) concentration aiming to improve the use of its nutritive potential. The operating conditions influence permeate flux that has been evaluated by monitoring the flow rate profile during the operation on bench scale in different conditions (feed pH, aeration condition and recovery rate). From the results found, the process scale up was then effected. The bench scale findings showed that the vinasse microfiltration under air flow of 0.5 m(3).h(-1) between membrane fibers, with no pH adjustment, and recovery rate of 93% produced two flows, one of permeate that may be used to wash the sugarcane during the ethanol production processing, and the other of concentrate that contains a high organic compounds and nutrients concentration. This concentrate has additional potentiality of being used as organic compound supplement in contaminated soil bioremediation, and as a supplier of microbial biomass or substrate for biosurfactant production.


Assuntos
Filtração/métodos , Resíduos Industriais/análise , Saccharum , Águas Residuárias/química , Poluentes Químicos da Água/química , Biodegradação Ambiental , Biomassa , Filtração/instrumentação , Indústria Alimentícia , Compostos Orgânicos
12.
Artigo em Inglês | MEDLINE | ID: mdl-27050340

RESUMO

The purpose of this article is to evaluate the integration of the air stripping, membrane bioreactor (MBR) and nanofiltration (NF) processes for the treatment of landfill leachate (LFL). Pretreatment by air stripping, without adjustment of pH, removed 65% of N-NH3 present in LFL. After pretreatment, the effluent was treated in MBR obtaining 44% of COD removal, and part of the N-NH3 was converted to nitrite and nitrate, which was later removed in the post-treatment. Nanofiltration was shown to be an effective process to improve the removal of organic compounds, the high toxicity present in LFL and nitrite and nitrate generated in the MBR. The system (air stripping + MBR + nanofiltration) obtained great efficiency of removal in most parameters analyzed, with overall removal of COD, ammonia, color and toxicity approximately 88, 95, 100 and 100%, respectively. By this route, treated landfill leachate may be reused at the landfill as water for dust arrestment and also as earth work on construction sites.


Assuntos
Reatores Biológicos , Eliminação de Resíduos/métodos , Poluentes Químicos da Água/química , Purificação da Água/métodos , Filtração , Humanos , Nanopartículas
13.
Water Environ Res ; 86(9): 788-99, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25327019

RESUMO

In this paper, the use of powered activated carbon (PAC) in membrane bioreactor (MBR) employed in the treatment of bleach pulp mill effluents was evaluated. The MBR was operated with hydraulic residence time of 9.5 h and PAC concentration of 10 g/L. The addition of PAC to the MBR reduced the average concentration of chemical oxygen demand (COD) in the permeate from 215 mg/L (82% removal efficiency) to 135 mg/L (88% removal efficiency), producing an effluent that can be reused on bleaching stage. Moreover, the addition of PAC to the MBR resulted in the reduction in applied pressure and provided a more stable operation during the monitoring period. This occurrence was probably due to the increase of critical flux after the addition of PAC. The fouling mechanism was investigated and the results showed that controlling the concentration of soluble microbial products (SMP) and extracellular polymeric substance (EPS) by using PAC and keeping the operational flux below critical flux is of major importance for MBR operational sustainability.


Assuntos
Reatores Biológicos , Carbono/química , Resíduos Industriais/análise , Eliminação de Resíduos Líquidos/métodos , Membranas Artificiais , Papel , Fatores de Tempo , Poluentes Químicos da Água
14.
Environ Technol ; : 1-12, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38449387

RESUMO

Incidents of mining dam failure have compromised the water quality, threatening the water supply. Different strategies are sought to restore the impacted area and to guarantee the water supply. One example is water treatment plants that treat high-polluted waters within the required limits for their multiple usages. The current study assesses the integration of reverse osmosis (RO) to a river water treatment plant (RWTP) installed in Brumadinho (Minas Gerais, Brazil) to treat the water from the Ferro-Carvão stream impacted by the B1 dam rupture in 2019. The RWTP started eleven months after the mining dam rupture and is equipped with eight coagulation-flocculation tanks followed by eight pressurised filters. A pilot RO plant was installed to polish the water treated by the RWTP. Water samples were collected at different points of the water treatment plant and were characterised by their physical, chemical, and biological parameters (160 in total). The results were compared with the historical data (1997-2022) to reveal the alterations in the water quality after the rupture event. The compliance with both parameters was only achieved after the RO treatment, which acted as an additional barrier to 30 contaminants. The water quality indexes (WQI) suggested that the raw surface water, even eleven months after the incident, was unfit for consumption (WQI: 133.9) whereas the reverse osmosis permeate was ranked as excellent in the rating grid (WQI: 23.7).

15.
Water Environ Res ; 84(7): 547-53, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22876476

RESUMO

The types of treatment most commonly used by pulp mills are biological treatments in combination with sedimentation or coagulation/flocculation as pretreatment. The main issues faced by these types of treatment are low efficiency in the removal of organic matter and the loss of aggregate value for the recovered fiber. Therefore, this study aims to evaluate the use of microfiltration (MF) combined with a membrane bioreactor (MBR) for the treatment of bleach pulp mill effluents. The results showed that the use of the MF-MBR system was an excellent alternative for the treatment of bleach pulp mill effluents with an average COD removal of 95%. The microfiltration allowed the recovery of fibers, which can be returned to the production process without losing economic value, and produced a better quality effluent for further treatment in the MBR. The MBR presented high efficiency removal of organic matter.


Assuntos
Reatores Biológicos , Resíduos Industriais/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Purificação da Água/métodos , Filtração/instrumentação , Filtração/métodos , Membranas Artificiais , Papel
16.
Chemosphere ; 309(Pt 1): 136618, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36181845

RESUMO

With dam failure events, there can be changes in water quality and difficulties in the operation of water treatment plants (WTPs) since they were not designed for water treatment under severe pollution conditions. To avoid that, it was investigated two strategies based on pre-oxidation, ultrafiltration (UF) and reverse osmosis (RO) integrated into a conventional treatment process (coagulation, flocculation, and sand filtration) or with each other, with the potential to reduce the risks of drinking water shortage and guarantee a safe drinking water supply. The study considered the context of the Velhas river basin (Brazil), where water quality is compromised by high turbidities (500-3000 NTU) and excessive arsenic (∼0.4 mg/L), iron (∼50 mg/L), and manganese (∼3 mg/L) levels. They were only partially removed by conventional treatments (removals: 74 ± 21%) and potability standards were only achieved after the membrane separation processes were considered (As: <0.01 mg/L, Mn: <0.1 mg/L, and Fe: <0.3 mg/L). The high water quality after RO enables its blend with the stream obtained after sand filters and would allow for greater flexibility during the operation of WTPs operation. Despite the susceptibility to fouling and most frequent maintenance, the pre-oxidation-UF-RO system would also guarantee a safe drinking water supply. The decision for the most adequate strategy was then based on a multicriteria analysis. A retrofit of conventional WTPs by their integration with UF-RO was classified as the best strategy for centralized facilities, whereas pre-oxidation-UF-RO better fits the reality of decentralized treatments given the lower costs and deployment time. The methodology based on multicriteria analysis and water treatment technologies, exemplified by membranes in this study, presented satisfactory results for different scenarios of critical treatment.


Assuntos
Arsênio , Água Potável , Purificação da Água , Osmose , Membranas Artificiais , Manganês , Ultrafiltração/métodos , Filtração/métodos , Purificação da Água/métodos , Tecnologia , Ferro
17.
Sci Total Environ ; 852: 158536, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36075437

RESUMO

Tailings dams have been built since 3000 BCE and despite the advancement of construction methods, mainly in the second half of the 21st century, their ruptures were still recorded. The main direct impacts are related to the loss of human lives, impairment of physical structures and changes in water quality. In this review, different dam failure events were critically analyzed considering their social and environmental impacts, besides the gaps in current regulations framework to appropriately charge the companies involved. These aspects differ the current review paper from those currently available, which also present advancements in the discussion of actions taken after the ruptures, the impacts on water quality, and the challenges related to the water supply. It has been noticed a lack of studies and methodologies capable to predict the water quality under scenarios of tailings contamination. Studies covering that aspect would be an important tool for planning emergency responses by stakeholders. With that in mind, the article discloses the pathway toward an effective strategy in scenarios of tailing dam failure that would mitigate the impacts on water quality and guarantee access to safe water.


Assuntos
Qualidade da Água , Abastecimento de Água , Humanos , Meio Ambiente , Rios/química
18.
Waste Manag ; 134: 110-119, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34418741

RESUMO

A membrane bioreactor inoculated with commercial baker's yeast (Saccharomyces cerevisiae) (MBRy) integrated to an air-stripping/absorption (AS/AB) as pre-treatment (aiming ammonia recovery) or a post-treatment (polishment step) was assessed for the landfill leachate treatment. The effect of chemical oxygen demand (COD) and nitrogen (N) ratio (C:N) on the performance of the MBRy was also investigated. At high COD/N ratio, high organic matter removal in terms of COD (71 ± 4%) and ammonia removal (97 ± 3%) was observed. Lower COD/N ratio favored yeast growth in the mixed liquor even under adverse conditions. The results of ammonia removal and recovery, and economic analysis demonstrated that the best way to integrate the AS/BS processes is as pre-treatment of MBRy. The ammonia concentration in the AS/AB process feed was a key factor to achieve the market specification. Although pH and temperature adjustment were adequate to promote ammonia removal/recovery, the AS operation at high temperatures showed the highest ammonia removal rate (99%). Therefore, the integration of AS/AB with MBRy allows obtaining a permeate with a final concentration of 2902 ± 374 mg L-1 of COD and 9 ± 7.5 mg L-1 of ammonia. Although it was possible to reach the Brazilian discharge standard for ammonia (20 mg L-1), it was not possible to reach the standard for COD, where the remaining fraction is recalcitrant organic matter, requiring the integration of a physico-chemical process. It should be noted that the proposed route allowed recovery 7 kg of ammonia per m3 of treated leachate.


Assuntos
Poluentes Químicos da Água , Amônia , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Análise Custo-Benefício , Nitrogênio , Poluentes Químicos da Água/análise
19.
Environ Pollut ; 268(Pt A): 115782, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120340

RESUMO

This study provided a monitoring of phenolic compounds occurrence in a river and in its treated water by a conventional water treatment plant (WTP) throughout a year-period, in Minas Gerais - Brazil. Furthermore, the environmental risk (hazard quotient - HQ), the human health risk (margin of exposure - MOE), and the cancer risk were calculated for the compounds. The results indicated that sixteen out of the seventeen investigated phenolic compounds were detected at some point during the sampling campaign. The most frequent compounds in the raw surface water were 2,3,4-trichlorophenol (234TCP), 2,4-dimethylphenol (24DMP), and 4-nitrophenol (4NP), whereas in treated water were 4NP and bisphenol A (BPA). In addition, the highest total concentration values were corelated to the months in which there was less precipitation, demonstrating that the presence of this micropollutants may be subject to seasonality. From the treated water results, it was not possible to state the efficiency of the conventional WTP in eliminating the phenols, since in some samples the phenolic compounds were totally removed and in others their increase or formation occurred. Regarding to the risk assessments, most of the evaluated compounds were considered highly toxic to some trophic level and posed a significant human health risk. Additionally, the risk reduction of phenolics using conventional WTP was low. The sixteen phenols contamination in surface and drinking waters appears to be subject to seasonality. Besides that, an alarming risk for environment and human health was identified.


Assuntos
Poluentes Químicos da Água , Compostos Benzidrílicos/análise , Brasil , Monitoramento Ambiental , Humanos , Fenóis/análise , Medição de Risco , Rios , Estações do Ano , Poluentes Químicos da Água/análise
20.
Waste Manag ; 132: 105-114, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329924

RESUMO

This study investigated the best way to combine nanofiltration (NF) and Fenton with membrane bioreactor inoculated with Saccharomyces cerevisiae (MBRy) for the treatment of landfill leachate, aiming at compliance with legislation and water reuse. Firstly, the permeate from MBRy was treated by Fenton process followed by NF (MBRy - Fenton - NF). Another alternative evaluated was the polishment of MBRy permeate by NF and treatment of NF concentrate by Fenton process (MBRy - NF - Fenton(concentrate)). COD removal in the Fenton step was optimized according to central composite design (CCD) and 85.5% removal was obtained at pH = 3, Fe2+:H2O2 molar ratio = 1:9.81 and C:H2O2 molar ratio = 1:1.14. Increased toxicity was observed with the Fenton application (EC50 = 2.45%). The NF showed the best performance treating the MBRy permeate. High permeate flux (8.9 ± 1.6 L h-1 m-2) and ion rejection (82 ± 4.2%), and low membrane fouling was observed in this condition. Although both NF permeate presented potential for reuse, the final COD concentration was lower in the MBRy - Fenton effluent (88 mg L-1). The Fenton application for the NF concentrate was able to remove 87.24% of COD. With a preliminary economic analysis, it was verified that the MBRy - NF - Fenton(concentrate) combination is the most advantageous due to the lower chemical reagent and membrane area requirements. Thus, this route presents itself as an alternative for landfill leachate reclamation.


Assuntos
Poluentes Químicos da Água , Reatores Biológicos , Peróxido de Hidrogênio , Oxirredução , Saccharomyces cerevisiae , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA