Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 84(3): 516-29, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22435733

RESUMO

Burkholderia pseudomallei is a category B pathogen and the causative agent of melioidosis--a serious infectious disease that is typically acquired directly from environmental reservoirs. Nearly all B. pseudomallei strains sequenced to date (> 85 isolates) contain gene clusters that are related to the contact-dependent growth inhibition (CDI) systems of γ-proteobacteria. CDI systems from Escherichia coli and Dickeya dadantii play significant roles in bacterial competition, suggesting these systems may also contribute to the competitive fitness of B. pseudomallei. Here, we identify 10 distinct CDI systems in B. pseudomallei based on polymorphisms within the cdiA-CT/cdiI coding regions, which are predicted to encode CdiA-CT/CdiI toxin/immunity protein pairs. Biochemical analysis of three B. pseudomallei CdiA-CTs revealed that each protein possesses a distinct tRNase activity capable of inhibiting cell growth. These toxin activities are blocked by cognate CdiI immunity proteins, which specifically bind the CdiA-CT and protect cells from growth inhibition. Using Burkholderia thailandensis E264 as a model, we show that a CDI system from B. pseudomallei 1026b mediates CDI and is capable of delivering CdiA-CT toxins derived from other B. pseudomallei strains. These results demonstrate that Burkholderia species contain functional CDI systems, which may confer a competitive advantage to these bacteria.


Assuntos
Proteínas de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Burkholderia pseudomallei/crescimento & desenvolvimento , Burkholderia pseudomallei/metabolismo , Inibição de Contato , Melioidose/imunologia , Melioidose/microbiologia , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Burkholderia pseudomallei/enzimologia , Burkholderia pseudomallei/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Humanos , Família Multigênica
2.
Glycobiology ; 15(4): 361-7, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15574802

RESUMO

In the Gram-negative bacterium Campylobacter jejuni there is a pgl (protein glycosylation) locus-dependent general N-glycosylation system of proteins. One of the proteins encoded by pgl locus, PglB, a homolog of the eukaryotic oligosaccharyltransferase component Stt3p, is proposed to function as an oligosaccharyltransferase in this prokaryotic system. The sequence requirements of the acceptor polypeptide for N-glycosylation were analyzed by reverse genetics using the reconstituted glycosylation of the model protein AcrA in Escherichia coli. As in eukaryotes, the N-X-S/T sequon is an essential but not a sufficient determinant for N-linked protein glycosylation. This conclusion was supported by the analysis of a novel C. jejuni glycoprotein, HisJ. Export of the polypeptide to the periplasm was required for glycosylation. Our data support the hypothesis that eukaryotic and bacterial N-linked protein glycosylation are homologous processes.


Assuntos
Proteínas de Bactérias/genética , Campylobacter jejuni/genética , Hexosiltransferases/genética , Proteínas de Membrana/genética , Processamento de Proteína Pós-Traducional/genética , Motivos de Aminoácidos/genética , Glicosilação , Transporte Proteico/genética
3.
Mol Microbiol ; 55(6): 1695-703, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15752194

RESUMO

We describe in this report the characterization of the recently discovered N-linked glycosylation locus of the human bacterial pathogen Campylobacter jejuni, the first such system found in a species from the domain Bacteria. We exploited the ability of this locus to function in Escherichia coli to demonstrate through mutational and structural analyses that variant glycan structures can be transferred onto protein indicating the relaxed specificity of the putative oligosaccharyltransferase PglB. Structural data derived from these variant glycans allowed us to infer the role of five individual glycosyltransferases in the biosynthesis of the N-linked heptasaccharide. Furthermore, we show that C. jejuni- and E. coli-derived pathways can interact in the biosynthesis of N-linked glycoproteins. In particular, the E. coli encoded WecA protein, a UDP-GlcNAc: undecaprenylphosphate GlcNAc-1-phosphate transferase involved in glycolipid biosynthesis, provides for an alternative N-linked heptasaccharide biosynthetic pathway bypassing the requirement for the C. jejuni-derived glycosyltransferase PglC. This is the first experimental evidence that biosynthesis of the N-linked glycan occurs on a lipid-linked precursor prior to transfer onto protein. These findings provide a framework for understanding the process of N-linked protein glycosylation in Bacteria and for devising strategies to exploit this system for glycoengineering.


Assuntos
Proteínas de Bactérias/metabolismo , Campylobacter jejuni/metabolismo , Glicoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Bactérias/genética , Campylobacter jejuni/enzimologia , Campylobacter jejuni/genética , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Teste de Complementação Genética , Glicosilação , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Espectrometria de Massas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Fosfatos de Poli-Isoprenil/metabolismo , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/metabolismo , Especificidade por Substrato , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/fisiologia , Uridina Difosfato N-Acetilglicosamina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA