Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 23(10): 13172-84, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-26074570

RESUMO

We report on a packaged prototype of a WDM photonic transceiver. It is an all-solid state hybrid assembly based on 130nm SOI photonic circuitry integrated with a 40nm CMOS VLSI driver. Our prototype supports eight tunable WDM channels operating at 10Gb/s, each capable of both transmitting and receiving data on the same chip. We discuss two options to close the link using the optical fiber or a waveguide bridge chip. We provide integration details and supporting link measurement data to describe packaged photonic module and its power efficient functionality with its on-chip power per channel averaging 1.3pJ/bit, excluding off-chip laser electrical power.

2.
Opt Express ; 23(10): 12808-22, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-26074535

RESUMO

We describe a multiwavelength hybrid-integrated solid-state link on a 3 µm silicon-on-insulator (SOI) nanophotonic platform. The link spans three chips and employs germanium-silicon electroabsorption waveguide modulators, silicon transport waveguides, echelle gratings for multiplexing and demultiplexing, and pure germanium waveguide photo-detectors. The 8λ WDM Tx and Rx components are interconnected via a routing "bridge" chip using edge-coupled optical proximity communication. The packaged, retimed digital WDM link is demonstrated at 10 Gb/s and 10(-12) BER, with three wavelength channels consuming an on-chip power below 1.5 pJ/bit, excluding the external laser power.

3.
Opt Express ; 22(10): 12628-33, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24921379

RESUMO

We report the first complete 10G silicon photonic ring modulator with integrated ultra-efficient CMOS driver and closed-loop wavelength control. A selective substrate removal technique was used to improve the ring tuning efficiency. Limited by the thermal tuner driver output power, a maximum open-loop tuning range of about 4.5nm was measured with about 14mW of total tuning power including the heater driver circuit power consumption. Stable wavelength locking was achieved with a low-power mixed-signal closed-loop wavelength controller. An active wavelength tracking range of > 500GHz was demonstrated with controller energy cost of only 20fJ/bit.

4.
Biotechnol Bioeng ; 109(12): 3189-98, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22729846

RESUMO

Mechanical strain is an important signal that influences the behavior and properties of cells in a wide variety of tissues. Physiologically similar mechanical strain can revert cultured cells to a more normal phenotype. Here, we have demonstrated that 3% equibiaxial (EB) and uniaxial strains confer favorable protein expression in cultured rabbit corneal fibroblasts (RCFs), with approximately 35% and 65% reduction in expression of α-smooth muscle actin (α-SMA), respectively. We have designed a novel bioreactor that is capable of imparting up to 7% EB strain and up to 6% EB strain using a cornea-shaped post. Additional features of the bioreactor include the application of shear stress to cells in culture and the ability to image cells using optical coherence microscopy (OCM) without being removed from the system.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/métodos , Córnea/citologia , Fibroblastos/fisiologia , Engenharia Tecidual/métodos , Actinas , Animais , Fibroblastos/citologia , Fibroblastos/metabolismo , Análise de Elementos Finitos , Coelhos , Reprodutibilidade dos Testes , Estresse Mecânico , Tomografia de Coerência Óptica
5.
Opt Express ; 19(6): 5172-86, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21445153

RESUMO

Using low parasitic microsolder bumping, we hybrid integrated efficient photonic devices from different platforms with advanced 40 nm CMOS VLSI circuits to build ultra-low power silicon photonic transmitters and receivers for potential applications in high performance inter/intra-chip interconnects. We used a depletion racetrack ring modulator with improved electro-optic efficiency to allow stepper optical photo lithography for reduced fabrication complexity. Integrated with a low power cascode 2 V CMOS driver, the hybrid silicon photonic transmitter achieved better than 7 dB extinction ratio for 10 Gbps operation with a record low power consumption of 1.35 mW. A received power penalty of about 1 dB was measured for a BER of 10(-12) compared to an off-the-shelf lightwave LiNOb3 transmitter, which comes mostly from the non-perfect extinction ratio. Similarly, a Ge waveguide detector fabricated using 130 nm SOI CMOS process was integrated with low power VLSI circuits using hybrid bonding. The all CMOS hybrid silicon photonic receiver achieved sensitivity of -17 dBm for a BER of 10(-12) at 10 Gbps, consuming an ultra-low power of 3.95 mW (or 395 fJ/bit in energy efficiency). The scalable hybrid integration enables continued photonic device improvements by leveraging advanced CMOS technologies with maximum flexibility, which is critical for developing ultra-low power high performance photonic interconnects for future computing systems.

6.
Opt Express ; 18(3): 3059-70, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20174136

RESUMO

We report the first sub-picojoule per bit (400fJ/bit) operation of a silicon modulator intimately integrated with a driver circuit and embedded in a clocked digital transmitter. We show a wall-plug power efficiency below 400microW/Gbps for a 130nm SOI CMOS carrier-depletion ring modulator flip-chip integrated to a 90nm bulk Si CMOS driver circuit. We also demonstrate stable error-free transmission of over 1.5 petabits of data at 5Gbps over 3.5 days using the integrated modulator without closed-loop ring resonance tuning. Small signal measurements of the CMOS ring modulator, sans circuit, showed a 3dB bandwidth in excess of 15GHz at 1V of reverse bias, indicating that further increases in transmission rate and reductions of energy-per-bit is possible while retaining compatibility with CMOS drive voltages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA