Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37508349

RESUMO

This article focuses on the qualitative analysis of complex dynamics arising in a few mathematical models in neuroscience context. We first discuss the dynamics arising in the three-dimensional FitzHugh-Rinzel (FHR) model and then illustrate those arising in a class of non-homogeneous FitzHugh-Nagumo (Nh-FHN) reaction-diffusion systems. FHR and Nh-FHN models can be used to generate relevant complex dynamics and wave-propagation phenomena in neuroscience context. Such complex dynamics include canards, mixed-mode oscillations (MMOs), Hopf-bifurcations and their spatially extended counterpart. Our article highlights original methods to characterize these complex dynamics and how they emerge in ordinary differential equations and spatially extended models.

2.
Front Comput Neurosci ; 16: 889235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769530

RESUMO

The brain produces rhythms in a variety of frequency bands. Some are likely by-products of neuronal processes; others are thought to be top-down. Produced entirely naturally, these rhythms have clearly recognizable beats, but they are very far from periodic in the sense of mathematics. The signals are broad-band, episodic, wandering in amplitude and frequency; the rhythm comes and goes, degrading and regenerating. Gamma rhythms, in particular, have been studied by many authors in computational neuroscience, using reduced models as well as networks of hundreds to thousands of integrate-and-fire neurons. All of these models captured successfully the oscillatory nature of gamma rhythms, but the irregular character of gamma in reduced models has not been investigated thoroughly. In this article, we tackle the mathematical question of whether signals with the properties of brain rhythms can be generated from low dimensional dynamical systems. We found that while adding white noise to single periodic cycles can to some degree simulate gamma dynamics, such models tend to be limited in their ability to capture the range of behaviors observed. Using an ODE with two variables inspired by the FitzHugh-Nagumo and Leslie-Gower models, with stochastically varying coefficients designed to control independently amplitude, frequency, and degree of degeneracy, we were able to replicate the qualitative characteristics of natural brain rhythms. To demonstrate model versatility, we simulate the power spectral densities of gamma rhythms in various brain states recorded in experiments.

3.
Biology (Basel) ; 9(6)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599867

RESUMO

This article describes a simple Susceptible Infected Recovered (SIR) model fitting with COVID-19 data for the month of March 2020 in New York (NY) state. The model is a classical SIR, but is non-autonomous; the rate of susceptible people becoming infected is adjusted over time in order to fit the available data. The death rate is also secondarily adjusted. Our fitting is made under the assumption that due to limiting number of tests, a large part of the infected population has not been tested positive. In the last part, we extend the model to take into account the daily fluxes between New Jersey (NJ) and NY states and fit the data for both states. Our simple model fits the available data, and illustrates typical dynamics of the disease: exponential increase, apex and decrease. The model highlights a decrease in the transmission rate over the period which gives a quantitative illustration about how lockdown policies reduce the spread of the pandemic. The coupled model with NY and NJ states shows a wave in NJ following the NY wave, illustrating the mechanism of spread from one attractive hot spot to its neighbor.

4.
Math Biosci Eng ; 15(2): 441-460, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29161844

RESUMO

In this paper, a network model has been proposed to control dengue disease transmission considering host-vector dynamics in n patches. The control of mosquitoes is performed by SIT. In SIT, the male insects are sterilized in the laboratory and released into the environment to control the number of offsprings. The basic reproduction number has been computed. The existence and stability of various states have been discussed. The bifurcation diagram has been plotted to show the existence and stability regions of disease-free and endemic states for an isolated patch. The critical level of sterile male mosquitoes has been obtained for the control of disease. The basic reproduction number for n patch network model has been computed. It is evident from numerical simulations that SIT control in one patch may control the disease in the network having two/three patches with suitable coupling among them.


Assuntos
Dengue/epidemiologia , Dengue/transmissão , Epidemias , Controle de Mosquitos/métodos , Aedes , Animais , Número Básico de Reprodução , Feminino , Humanos , Masculino , Modelos Teóricos , Mosquitos Vetores
5.
Philos Trans A Math Phys Eng Sci ; 367(1908): 4863-75, 2009 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-19884183

RESUMO

We investigate a system of partial differential equations of reaction-diffusion type which displays propagation of bursting oscillations. This system represents the time evolution of an assembly of cells constituted by a small nucleus of bursting cells near the origin immersed in the middle of excitable cells. We show that this system displays a global attractor in an appropriated functional space. Numerical simulations show the existence in this attractor of recurrent solutions which are waves propagating from the central source. The propagation seems possible if the excitability of the neighbouring cells is above some threshold.


Assuntos
Relógios Biológicos/fisiologia , Proliferação de Células , Células Cultivadas , Modelos Biológicos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA