Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Mater Eng ; 35(3): 249-264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38189746

RESUMO

BACKGROUND: The scientific revolution in the treatment of many illnesses has been significantly aided by stem cells. This paper presents an optimal control on a mathematical model of chemotherapy and stem cell therapy for cancer treatment. OBJECTIVE: To develop effective hybrid techniques that combine the optimal control theory (OCT) with the evolutionary algorithm and multi-objective swarm algorithm. The developed technique is aimed to reduce the number of cancerous cells while utilizing the minimum necessary chemotherapy medications and minimizing toxicity to protect patients' health. METHODS: Two hybrid techniques are proposed in this paper. Both techniques combined OCT with the evolutionary algorithm and multi-objective swarm algorithm which included MOEA/D, MOPSO, SPEA II and PESA II. This study evaluates the performance of two hybrid techniques in terms of reducing cancer cells and drug concentrations, as well as computational time consumption. RESULTS: In both techniques, MOEA/D emerges as the most effective algorithm due to its superior capability in minimizing tumour size and cancer drug concentration. CONCLUSION: This study highlights the importance of integrating OCT and evolutionary algorithms as a robust approach for optimizing cancer chemotherapy treatment.


Assuntos
Algoritmos , Antineoplásicos , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Simulação por Computador , Terapia Combinada , Transplante de Células-Tronco/métodos , Modelos Biológicos , Inteligência Artificial
2.
Sci Rep ; 12(1): 15577, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114201

RESUMO

Due to their unique microstructures, micropolar fluids have attracted enormous attention for their industrial applications, including convective heat and mass transfer polymer production and rigid and random cooling particles of metallic sheets. The thermodynamical demonstration is an integral asset for anticipating the ideal softening of heat transfer. This is because there is a decent connection between mathematical and scientific heat transfers through thermodynamic anticipated outcomes. A model is developed under the micropolar stream of a non-Newtonian (3rd grade) liquid in light of specific presumptions. Such a model is dealt with by summoning likeness answers for administering conditions. The acquired arrangement of nonlinear conditions is mathematically settled using the fourth-fifth order Runge-Kutta-Fehlberg strategy. The outcomes of recognized boundaries on liquid streams are investigated in subtleties through the sketched realistic images. Actual amounts like Nusselt number, Sherwood number, and skin-part coefficient are explored mathematically by tables. It is observed that the velocity distribution boosts for larger values of any of [Formula: see text], [Formula: see text], and declines for larger [Formula: see text] and Hartmann numbers. Furthermore, the temperature distribution [Formula: see text] shows direct behavior with the radiation parameter and Eckert number, while, opposite behavior with Pr, and K. Moreover, the concentration distribution shows diminishing behavior as we put the higher value of the Brownian motion number.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA