Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cureus ; 15(10): e46746, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38022326

RESUMO

Background This study aims to evaluate the accuracy of volumetric measurements of three-dimensional (3D)-printed human condyles from cone-beam computed tomography (CBCT) in comparison to physical condyles using a water displacement test. Methodology A sample of 22 dry condyles was separated from the mandibular body by disc, mounted on a base made of casting wax, and scanned using the SCANORA (Scanora 3DX, Soredex, Finland) CBCT scanner. Subsequently, the projection data were reconstructed with the machine-dedicated OnDemand 3D (Cybermed Co., Seoul, Korea). The Standard Tessellation Language file was prepared for 3D printing using chitubox slicing software v1.9.1. Frozen water-washable gray resin was used for 3D printing. All condyles were printed using the same parameters and the same resin. The volumetric measurements were then performed using a customized modified pycnometer based on water volume and weight displacement. Volumetric measures were performed for both the physical human condyles and the 3D-printed replicas and the measurements were then compared. Results The volume of dry condyles using the water displacement method showed an average (±SD) of 1.925 ± 0.40 cm3. However, the volume of 3D-printed replicas using the water displacement method showed an average (±SD) of 2.109 ± 0.40 cm3. The differences in measurements were insignificant (p > 0.05), as revealed by an independent t-test. Conclusions Highly precise, accurate, and reliable CBCT for volumetric mandibular condyle was applied for measurements of a human condyle and 3D-printed replica. The modified pycnometer for volumetric measurements presented an excellent volumetric measure based on a simple water displacement device. The tested modified pycnometer can be applied in volumetric measurements in both 3D-printed and mandibular condyle. For best accuracy, the highest scanning resolution possible should be used. As it directly handles irregularly shaped solid objects in a non-destructive manner with a high level of precision and reliability, this 3D scanning approach may be seen as a superior alternative to the current measurement methods.

2.
Lasers Dent Sci ; 6(3): 177-187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35611353

RESUMO

Purpose: This study aimed to evaluate the skeletal and dentoalveolar changes achieved by combining low-level laser irradiation applied on the condyle area with twin-block therapy in growing class II malocclusion patients. Methods: Fourteen patients (9 males, 5 females; mean age, 11.4 ± 2 years) with skeletal class II mandibular deficiency were recruited. They were divided into two groups (G 1: twin-block + low-level laser therapy, G 2: twin-block only). A semiconductor diode laser with a wavelength of 940 nm was applied on the condyle area (100 mW, 2.5 J, 3.9 J/cm2). The laser was applied twice a week in the first month and once a week in the second and third months, totalizing 16 sessions. Skeletal, dental, and soft-tissue cephalometric parameters were measured and compared at different treatment points. Results: Mandibular length (Co-Gn) was significantly increased by 3.6 mm in the experiment group (3.16 SD) and 4.3 mm (4.4 SD) in the control group, with no significant difference between groups at every time point (P-value 0.949 at T2). Similarly, a statistically significant positive effect of treatment was found in both groups on ramus height (Co-Go), upper lip to E-Line, SNA angle, ANB angle, and U1/SN angle with no significant difference between groups. Conclusion: Based on the results of this preliminary study, low-level laser irradiation with the used parameters seems to have no synergetic impact on the skeletal and dental outcomes of twin-block therapy over 9 months. However, more studies are needed to investigate the effect of low-level laser therapy on condylar growth during functional orthodontic treatment. Supplementary Information: The online version contains supplementary material available at 10.1007/s41547-022-00158-x.

3.
Life Sci ; 291: 120260, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34968466

RESUMO

Diabetic nephropathy (DN) is a serious complication of diabetes and can lead to renal failure. Telmisartan (TEL) is an approved angiotensin II type 1 receptor blocker for the treatment of hypertension and possesses nephroprotective efficacy. The study investigated the beneficial effect of TEL on renal oxidative stress, inflammatory response, and apoptosis in type 1 diabetic rats, pointing to the possible role of Nrf2/HO-1 signaling. Diabetes was induced by streptozotocin (STZ), and TEL (5 and 10 mg/kg) was supplement for 8 weeks. TEL ameliorated hyperglycemia, prevented body weight loss and kidney hypertrophy, decreased serum creatinine and urea, and prevented histopathological alterations in diabetic rats. Malondialdehyde (MDA), nitric oxide (NO), NF-κB p65 and TNF-α were increased, whereas GSH, SOD and Bcl-2 were decreased in the kidney of diabetic rats. Treatment with TEL ameliorated oxidative stress, suppressed NF-κB p65 and TNF-α, and boosted cellular antioxidant defenses and Bcl-2. TEL upregulated Nrf2 and HO-1 in the kidney of both normal and diabetic rats. In addition, TEL downregulated VEGF and MMP-9 in the kidney of diabetic rats. In silico molecular docking simulations revealed the potent binding affinity of TEL to NF-κB, MMP-9, Keap1 and HO-1. In conclusion, TEL attenuates DN by ameliorating hyperglycemia, oxidative stress, inflammation, apoptosis and angiogenesis and upregulation of Nrf2/HO-1 signaling.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Telmisartan/farmacologia , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Inflamação , Rim/metabolismo , Rim/patologia , Masculino , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Estreptozocina/farmacologia , Telmisartan/metabolismo
4.
J Gastrointest Cancer ; 53(2): 480-495, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33974218

RESUMO

The present work aimed to study the activity of naturally derived fungal secondary metabolites as anticancer agents concerning their cytotoxicity, apoptotic, genetic, and histopathological profile. It was noticed that Aspergillus terreus, Aspergillus flavus, and Aspergillus fumigatus induced variable toxic potential that was cell type, secondary metabolite type, and concentration dependent. Human colonic adenocarcinoma cells (Caco-2) showed less sensitivity than hepatocyte-derived cellular carcinoma cells (HuH-7), and in turn, the half-maximal inhibitory concentration (IC50) was variable. Also, the apoptotic potential of Aspergillus species-derived fungal secondary metabolites was proven via detection of up-regulated pro-apoptotic genes and down-regulation of anti-apoptotic genes. The expression level was cell type dependent. Concurrently, apoptotic profile was accompanied with cellular DNA accumulation at the G2/M phase, as well as an elevation in Pre-G1 phase but not during G0/G1 and S phases. Also, there were characteristic apoptotic features of treated cells presented as abnormal intra-nuclear eosinophilic structures, dead cells with mixed euchromatin and heterochromatin, ruptured cell membranes, apoptotic cells with irregular cellular and nuclear membranes, as well as peripheral chromatin condensation. It can be concluded that Aspergillus secondary metabolites are promising agents that can be used as supplementary agents to the currently applied anti-cancer drug regimen.


Assuntos
Antineoplásicos , Apoptose , Antineoplásicos/farmacologia , Células CACO-2 , Humanos
5.
Infect Agent Cancer ; 17(1): 4, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120563

RESUMO

BACKGROUND: Resistance to antibiotics and anticancer therapy is a serious global health threat particularly in immunosuppressed cancer patients. Current study aimed to estimate the antibacterial and anticancer potentials of short-term exposure to extremely low frequency electromagnetic field (ELF-EMF) and silver nanoparticles (AgNPs) either in sole or combined form. METHODS: Antibacterial activity was evaluated via determination of the bacterial viable count reduction percentage following exposure, whereas their ability to induce apoptosis in breast cancer (MCF-7) cell line was detected using annexin V-fluorescein isothiocyanate and cell cycle analysis. Also, oxidative stress potential and molecular profile were investigated. RESULTS: ELF-EMF and AgNPs significantly (p < 0.01) reduced K. pneumonia viable count of compared to that of S. aureus in a time dependent manner till reaching 100% inhibition when ELF-EMF was applied in combination to 10 µM/ml AgNPs for 2 h. Apoptosis induction was obvious following exposure to either ELF-EMF or AgNPs, however their apoptotic potential was intensified when applied in combination recording significantly (p < 0.001) induced apoptosis as indicated by elevated level of MCF-7 cells in the Pre G1 phase compared to control. S phase arrest and accumulation of cells in G2/M phase was observed following exposure to AgNPs and EMF, respectively. Up-regulation in the expression level of p53, iNOS and NF-kB genes as well as down-regulation of Bcl-2 and miRNA-125b genes were detected post treatment. CONCLUSIONS: The antibacterial and anticancer potentials of these agents might be related to their ability to induce oxidative stress, suggesting their potentials as novel candidates for controlling infections and triggering cancer cells towards self-destruction.

6.
Front Oncol ; 12: 933750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457501

RESUMO

Zinc oxide nanomaterial is a potential material in the field of cancer therapy. In this study, zinc oxide nanospheres (ZnO-NS) were synthesized by Sol-gel method using yeast extract as a non-toxic bio-template and investigated their physicochemical properties through various techniques such as FTIR, XR, DLS, and TEM. Furthermore, free zinc ions released from the zinc oxide nanosphere suspended medium were evaluated by using the ICP-AS technique. Therefore, the cytotoxicity of ZnO nanospheres and released Zn ions on both HuH7 and Vero cells was studied using the MTT assay. The data demonstrated that the effectiveness of ZnO nanospheres on HuH7 was better than free Zn ions. Similarly, ZnO-Ns were significantly more toxic to HuH7 cell lines than Vero cells in a concentration-dependent manner. The cell cycle of ZnO-Ns against Huh7 and Vero cell lines was arrested at G2/M. Also, the apoptosis assay using Annexin-V/PI showed that apoptosis of HuH7 and Vero cell lines by ZnO nanospheres was concentration and time-dependent. Caspase 3 assay results showed that the apoptosis mechanism may be intrinsic and extrinsic pathways. The mechanism of apoptosis was determined by applying the RT-PCR technique. The results revealed significantly up-regulated Bax, P53, and Cytochrome C, while the Bcl2 results displayed significant down-regulation and the western blot data confirmed the RT-PCR data. There is oxidative stress of the ZnO nanospheres and free Zn+2 ions. Results indicated that the ZnO nanospheres and free Zn+2 ions induced oxidative stress through increasing reactive oxygen species (ROS) and lipid peroxidation. The morphology of the HuH7 cell line after exposure to ZnO nanospheres at different time intervals revealed the presence of the chromatin condensation of the nuclear periphery fragmentation. Interestingly, the appearance of canonical ultrastructure features of apoptotic morphology of Huh7, Furthermore, many vacuoles existed in the cytoplasm, the majority of which were lipid droplets, which were like foamy cells. Also, there are vesicles intact with membranes that are recognized as swollen mitochondria.

7.
Clin Exp Vaccine Res ; 10(3): 229-239, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34703805

RESUMO

PURPOSE: One of the essential goals regarding the successful control of rabies infection is the development of a safe, effective, and inexpensive vaccine. the current study aimed to evaluate the inactivation potential of ß-propiolactone (ßPL), binary ethyleneimine (BEI), and hydrogen peroxide (H2O2). MATERIALS AND METHODS: Estimating the inactivation kinetics of ßPL, BEI, and H2O2 revealed that the tested inactivants could completely and irreversibly inactivate rabies virus within 2, 12, and 4 hours, respectively while maintaining its viral immunogenicity. The potency of ßPL, BEI, and H2O2 inactivated vaccines was higher than the World Health Organization acceptance limit and were in the order of 3.75, 4.21, and 3.64 IU/mL, respectively. Monitoring the humoral and cellular immunity elicited post-immunization using Staphylococcus aureus derived hyaluronic acid (HA) and bacillus Calmette-Guérin purified protein derivative (PPD) adjuvanted rabies vaccine candidates were carried out using enzyme-linked immunosorbent assay. RESULTS: Results demonstrated that both adjuvants could progressively enhance the release of anti-rabies total immunoglobulin G as well as the pro-inflammatory mediators (interferon-gamma and interleukin-5) relative to time. However, a higher immune response was developed in the case of HA adjuvanted rabies vaccine compared to PPD adjuvanted one. The harmful consequences of the tested adjuvants were considered via investigating the histopathological changes in the tissues of the immunized rats using hematoxylin and eosin stain. Lower adverse effects were observed post-vaccination with HA and PPD adjuvanted vaccines compared to that detected following administration of the currently used alum as standard adjuvant. CONCLUSION: Our findings suggested that HA and PPD could serve as a promising platform for the development of newly adjuvanted rabies vaccines with elevated immune enhancing potentials and lower risk of health hazards.

8.
ACS Omega ; 6(30): 20042-20052, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34368589

RESUMO

The present work aimed to evaluate the reactivity of natural bioflavonoid hesperidin (HSP) and synthetically derived XAV939 (XAV) against human hepatocellular carcinoma (HepG2), human breast cancer (MDA-MB231) cancer cell lines, and related molecular and pathological profiles. Data recorded revealed that the cytotoxic potential of the tested products was found to be cell type- and concentration-dependent. The half-maximal inhibitory concentration (IC50) value of the HSP-XAV mixture against MDA-MB231 was significantly decreased in the case of using the HSP-XAV mixture against the HepG2 cell line. Also, there was a significant upregulation of the phosphotumor suppressor protein gene (P53) and proapoptotic genes such as B-cell lymphoma-associated X-protein (Bax, CK, and Caspase-3), while antiapoptotic gene B-cell lymphoma (Bcl-2) was significantly downregulated compared with the untreated cell control. The cell cycle analysis demonstrated that DNA accumulation was detected mainly during the G2/M phase of the cell cycle accompanied with the elevated reactive oxygen species level in the treatment of HepG2 and MDA-MB231 cell lines by the HSP-XAV mixture, more significantly than that in the case of cell control. Finally, our finding suggests that both HSP and XAV939 and their mixture may offer an alternative in human liver and breast cancer therapy.

9.
Folia Histochem Cytobiol ; 57(4): 159-167, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31746453

RESUMO

INTRODUCTION: The extremely-low frequency electromagnetic field (ELFEMF) has been proposed for use in cancer therapy since it was found that magnetic waves interfere with many biological processes. Gold nanoparticles (Au-NPs) have been widely used for drug delivery during cancer in vitro studies due to their low cytotoxity and high biocompatibility. The electroporation of cancer cells in a presence of Au-NPs (EP Au-NPs) can induce cell apoptosis, alterations of cell cycle profile and morphological changes. The impact of ELFEMF and EP Au-NPs on morphology, cell cycle and activation of apoptosis-associated genes on Hep-2 laryngeal cancer cell line has not been studied yet. MATERIALS AND METHODS: ELFEMF on Hep-2 cells were carried out using four different conditions: 25/50 mT at 15/30 min, while Au-NPs were used as direct contact (DC) or with electroporation (EP, 10 pulses at 200V, equal time intervals of 4 sec). MTT assay was used to check the toxicity of DC Au-NPs. Expression of CASP3, P53, BAX and BCL2 genes was quantified using qPCR. Cell cycle was analyzed by flow cytometry. Hematoxylin and eosin (HE) staining was used to observe cell morphology. RESULTS: Calculated IC50 of DC Au-NPs 24.36 µM (4.79 µg/ml) and such concentration was used for further DC and EP AuNPs experiments. The up-regulation of pro-apoptotic genes (CASP3, P53, BAX) and decreased expression of BCL2, respectively, was observed for all analyzed conditions with the highest differences for EP AuNPs and ELFEMF 50 mT/30 min in comparison to control cells. The highest content of cells arrested in G2/M phase was observed in ELFEMF-treated cells for 30 min both at 25 or 50 mT, while the cells treated with EP AuNPs or ELFEMF 50 mT/15 min showed highest ratios of apoptotic cells. HE staining of electroporated cells and cells exposed to ELFEMF's low and higher frequencies for different times showed nuclear pleomorphic cells. Numerous apoptotic bodies were observed in the irregular cell membrane of neoplastic and necrotic cells with mixed euchromatin and heterochromatin. CONCLUSIONS: Our observations indicate that treatment of Hep-2 laryngeal cancer cells with ELFEMF for 30 min at 25-50 mT and EP Au-NPs can cause cell damage inducing apoptosis and cell cycle arrest.


Assuntos
Antineoplásicos/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Antineoplásicos/química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Campos Eletromagnéticos , Eletroporação/métodos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Ouro/toxicidade , Humanos , Nanopartículas Metálicas/toxicidade , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA