Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 500(7461): 212-6, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23925246

RESUMO

The extraction of directional motion information from changing retinal images is one of the earliest and most important processing steps in any visual system. In the fly optic lobe, two parallel processing streams have been anatomically described, leading from two first-order interneurons, L1 and L2, via T4 and T5 cells onto large, wide-field motion-sensitive interneurons of the lobula plate. Therefore, T4 and T5 cells are thought to have a pivotal role in motion processing; however, owing to their small size, it is difficult to obtain electrical recordings of T4 and T5 cells, leaving their visual response properties largely unknown. We circumvent this problem by means of optical recording from these cells in Drosophila, using the genetically encoded calcium indicator GCaMP5 (ref. 2). Here we find that specific subpopulations of T4 and T5 cells are directionally tuned to one of the four cardinal directions; that is, front-to-back, back-to-front, upwards and downwards. Depending on their preferred direction, T4 and T5 cells terminate in specific sublayers of the lobula plate. T4 and T5 functionally segregate with respect to contrast polarity: whereas T4 cells selectively respond to moving brightness increments (ON edges), T5 cells only respond to moving brightness decrements (OFF edges). When the output from T4 or T5 cells is blocked, the responses of postsynaptic lobula plate neurons to moving ON (T4 block) or OFF edges (T5 block) are selectively compromised. The same effects are seen in turning responses of tethered walking flies. Thus, starting with L1 and L2, the visual input is split into separate ON and OFF pathways, and motion along all four cardinal directions is computed separately within each pathway. The output of these eight different motion detectors is then sorted such that ON (T4) and OFF (T5) motion detectors with the same directional tuning converge in the same layer of the lobula plate, jointly providing the input to downstream circuits and motion-driven behaviours.


Assuntos
Drosophila/fisiologia , Percepção de Movimento/fisiologia , Vias Visuais/fisiologia , Animais , Comportamento Animal/fisiologia , Drosophila/citologia , Interneurônios/fisiologia , Locomoção/fisiologia , Neurônios/fisiologia , Transdução de Sinais , Vias Visuais/citologia
2.
Nat Neurosci ; 26(11): 1894-1905, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783895

RESUMO

Inhibitory interactions between opponent neuronal pathways constitute a common circuit motif across brain areas and species. However, in most cases, synaptic wiring and biophysical, cellular and network mechanisms generating opponency are unknown. Here, we combine optogenetics, voltage and calcium imaging, connectomics, electrophysiology and modeling to reveal multilevel opponent inhibition in the fly visual system. We uncover a circuit architecture in which a single cell type implements direction-selective, motion-opponent inhibition at all three network levels. This inhibition, mediated by GluClα receptors, is balanced with excitation in strength, despite tenfold fewer synapses. The different opponent network levels constitute a nested, hierarchical structure operating at increasing spatiotemporal scales. Electrophysiology and modeling suggest that distributing this computation over consecutive network levels counteracts a reduction in gain, which would result from integrating large opposing conductances at a single instance. We propose that this neural architecture provides resilience to noise while enabling high selectivity for relevant sensory information.


Assuntos
Drosophila , Percepção de Movimento , Animais , Neurônios/fisiologia , Sinapses/fisiologia , Percepção de Movimento/fisiologia , Vias Visuais
3.
Curr Biol ; 32(9): 2022-2036.e4, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35385694

RESUMO

Electrical synapses are present in almost all organisms that have a nervous system. However, their brain-wide expression patterns and the full range of contributions to neural function are unknown in most species. Here, we first provide a light-microscopic, immunohistochemistry-based anatomical map of all innexin gap junction proteins-the building blocks of electrical synapses-in the central nervous system of Drosophila melanogaster. Of those innexin types that are expressed in the nervous system, some localize to glial cells, whereas others are predominantly expressed in neurons, with shakB being the most widely expressed neuronal innexin. We then focus on the function of shakB in VS/HS cells-a class of visual projection neurons-thereby uncovering an unexpected role for electrical synapses. Removing shakB from these neurons leads to spontaneous, cell-autonomous voltage and calcium oscillations, demonstrating that electrical synapses are required for these cells' intrinsic stability. Furthermore, we investigate the role of shakB-type electrical synapses in early visual processing. We find that the loss of shakB from the visual circuits upstream of VS/HS cells differentially impairs ON and OFF visual motion processing pathways but is not required for the computation of direction selectivity per se. Taken together, our study demonstrates that electrical synapses are widespread across the Drosophila nervous system and that they play essential roles in neuronal function and visual information processing.


Assuntos
Proteínas de Drosophila , Sinapses Elétricas , Animais , Conexinas/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Sinapses Elétricas/fisiologia , Junções Comunicantes/metabolismo , Sinapses/metabolismo
4.
Nat Commun ; 10(1): 3178, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320644

RESUMO

mRNA transport restricts translation to specific subcellular locations, which is the basis for many cellular functions. However, the precise process of mRNA sorting to synapses in neurons remains elusive. Here we use Rgs4 mRNA to investigate 3'-UTR-dependent transport by MS2 live-cell imaging. The majority of observed RNA granules display 3'-UTR independent bidirectional transport in dendrites. Importantly, the Rgs4 3'-UTR causes an anterograde transport bias, which requires the Staufen2 protein. Moreover, the 3'-UTR mediates dynamic, sustained mRNA recruitment to synapses. Visualization at high temporal resolution enables us to show mRNA patrolling dendrites, allowing transient interaction with multiple synapses, in agreement with the sushi-belt model. Modulation of neuronal activity by either chemical silencing or local glutamate uncaging regulates both the 3'-UTR-dependent transport bias and synaptic recruitment. This dynamic and reversible mRNA recruitment to active synapses would allow translation and synaptic remodeling in a spatially and temporally adaptive manner.


Assuntos
Regiões 3' não Traduzidas/genética , Dendritos/genética , Hipocampo/metabolismo , Transporte de RNA/fisiologia , RNA Mensageiro/genética , Sinapses/metabolismo , Animais , Linhagem Celular , Células HEK293 , Humanos , Proteínas RGS/genética , Proteínas de Ligação a RNA/genética , Ratos , Ratos Sprague-Dawley
5.
Curr Biol ; 27(7): 929-944, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28343964

RESUMO

Detecting the direction of motion contained in the visual scene is crucial for many behaviors. However, because single photoreceptors only signal local luminance changes, motion detection requires a comparison of signals from neighboring photoreceptors across time in downstream neuronal circuits. For signals to coincide on readout neurons that thus become motion and direction selective, different input lines need to be delayed with respect to each other. Classical models of motion detection rely on non-linear interactions between two inputs after different temporal filtering. However, recent studies have suggested the requirement for at least three, not only two, input signals. Here, we comprehensively characterize the spatiotemporal response properties of all columnar input elements to the elementary motion detectors in the fruit fly, T4 and T5 cells, via two-photon calcium imaging. Between these input neurons, we find large differences in temporal dynamics. Based on this, computer simulations show that only a small subset of possible arrangements of these input elements maps onto a recently proposed algorithmic three-input model in a way that generates a highly direction-selective motion detector, suggesting plausible network architectures. Moreover, modulating the motion detection system by octopamine-receptor activation, we find the temporal tuning of T4 and T5 cells to be shifted toward higher frequencies, and this shift can be fully explained by the concomitant speeding of the input elements.


Assuntos
Drosophila/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Visão Ocular , Animais , Estimulação Luminosa , Vias Visuais/fisiologia
6.
Nat Neurosci ; 19(5): 706-715, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26928063

RESUMO

The reliable estimation of motion across varied surroundings represents a survival-critical task for sighted animals. How neural circuits have adapted to the particular demands of natural environments, however, is not well understood. We explored this question in the visual system of Drosophila melanogaster. Here, as in many mammalian retinas, motion is computed in parallel streams for brightness increments (ON) and decrements (OFF). When genetically isolated, ON and OFF pathways proved equally capable of accurately matching walking responses to realistic motion. To our surprise, detailed characterization of their functional tuning properties through in vivo calcium imaging and electrophysiology revealed stark differences in temporal tuning between ON and OFF channels. We trained an in silico motion estimation model on natural scenes and discovered that our optimized detector exhibited differences similar to those of the biological system. Thus, functional ON-OFF asymmetries in fly visual circuitry may reflect ON-OFF asymmetries in natural environments.


Assuntos
Drosophila , Percepção de Movimento/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Vias Visuais/fisiologia , Animais , Simulação por Computador , Feminino , Modelos Neurológicos
7.
Neuron ; 88(6): 1240-1252, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26673659

RESUMO

Spatial contrast, the difference in adjacent luminance values, provides information about objects, textures, and motion and supports diverse visual behaviors. Contrast computation is therefore an essential element of visual processing. The underlying mechanisms, however, are poorly understood. In human psychophysics, contrast illusions are means to explore such computations, but humans offer limited experimental access. Via behavioral experiments in Drosophila, we find that flies are also susceptible to contrast illusions. Using genetic silencing techniques, electrophysiology, and modeling, we systematically dissect the mechanisms and neuronal correlates underlying the behavior. Our results indicate that spatial contrast computation involves lateral inhibition within the same pathway that computes motion of luminance increments (ON pathway). Yet motion-blind flies, in which we silenced downstream motion-sensitive neurons needed for optomotor behavior, have fully intact contrast responses. In conclusion, spatial contrast and motion cues are first computed by overlapping neuronal circuits which subsequently feed into parallel visual processing streams.


Assuntos
Sensibilidades de Contraste/fisiologia , Estimulação Luminosa/métodos , Vias Visuais/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila , Feminino
8.
Curr Biol ; 25(17): 2247-53, 2015 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-26234212

RESUMO

Detecting the direction of visual movement is fundamental for every sighted animal in order to navigate, avoid predators, or detect conspecifics. Algorithmic models of correlation-type motion detectors describe the underlying computation remarkably well. They consist of two spatially separated input lines that are asymmetrically filtered in time and then interact in a nonlinear way. However, the cellular implementation of this computation remains elusive. Recent connectomic data of the Drosophila optic lobe has suggested a neural circuit for the detection of moving bright edges (ON motion) with medulla cells Mi1 and Tm3 providing spatially offset input to direction-selective T4 cells, thereby forming the two input lines of a motion detector. Electrophysiological characterization of Mi1 and Tm3 revealed different temporal filtering properties and proposed them to correspond to the delayed and direct input, respectively. Here, we test this hypothesis by silencing either Mi1 or Tm3 cells and using electrophysiological recordings and behavioral responses of flies as a readout. We show that Mi1 is a necessary element of the ON pathway under all stimulus conditions. In contrast, Tm3 is specifically required only for the detection of fast ON motion in the preferred direction. We thereby provide first functional evidence that Mi1 and Tm3 are key elements of the ON pathway and uncover an unexpected functional specialization of these two cell types. Our results thus require an elaboration of the currently prevailing model for ON motion detection and highlight the importance of functional studies for neural circuit breaking.


Assuntos
Drosophila melanogaster/fisiologia , Percepção de Movimento , Visão Ocular , Animais , Vias Visuais
9.
Nat Neurosci ; 16(6): 730-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23624513

RESUMO

Different visual features of an object, such as its position and direction of motion, are important elements for animal orientation, but the neural circuits extracting them are generally not well understood. We analyzed this problem in Drosophila, focusing on two well-studied behaviors known as optomotor response and fixation response. In the neural circuit controlling the optomotor response, columnar T4 and T5 cells are thought to be crucial. We found that blocking T4 and T5 cells resulted in a complete loss of the optomotor response. Nevertheless, these flies were still able to fixate a black bar, although at a reduced performance level. Further analysis revealed that flies in which T4 and T5 cells were blocked possess an intact position circuit that is implemented in parallel to the motion circuit; the optomotor response is exclusively controlled by the motion circuit, whereas the fixation response is supported by both the position and the motion circuit.


Assuntos
Locomoção/genética , Percepção de Movimento/fisiologia , Neurônios/fisiologia , Percepção Visual/genética , Animais , Animais Geneticamente Modificados , Comportamento Animal , Drosophila/genética , Fenômenos Eletrofisiológicos , Feminino , Modelos Neurológicos , Vias Neurais/fisiopatologia , Neurônios/patologia , Testes Neuropsicológicos , Técnicas de Patch-Clamp
10.
PLoS One ; 8(8): e71540, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977069

RESUMO

Important brain functions need to be conserved throughout organisms of extremely varying sizes. Here we study the scaling properties of an essential component of computation in the brain: the single neuron. We compare morphology and signal propagation of a uniquely identifiable interneuron, the HS cell, in the blowfly (Calliphora) with its exact counterpart in the fruit fly (Drosophila) which is about four times smaller in each dimension. Anatomical features of the HS cell scale isometrically and minimise wiring costs but, by themselves, do not scale to preserve the electrotonic behaviour. However, the membrane properties are set to conserve dendritic as well as axonal delays and attenuation as well as dendritic integration of visual information. In conclusion, the electrotonic structure of a neuron, the HS cell in this case, is surprisingly stable over a wide range of morphological scales.


Assuntos
Dípteros/fisiologia , Drosophila melanogaster/fisiologia , Neurônios/fisiologia , Animais , Dendritos/fisiologia , Dípteros/anatomia & histologia , Drosophila melanogaster/anatomia & histologia , Fenômenos Eletrofisiológicos , Modelos Neurológicos , Condução Nervosa/fisiologia , Vias Visuais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA