Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 226(1): 189-204, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31749193

RESUMO

Arabidopsis plants overexpressing glycolate oxidase in chloroplasts (GO5) and loss-of-function mutants of the major peroxisomal catalase isoform, cat2-2, produce increased hydrogen peroxide (H2 O2 ) amounts from the respective organelles when subjected to photorespiratory conditions like increased light intensity. Here, we have investigated if and how the signaling processes triggered by H2 O2 production in response to shifts in environmental conditions and the concomitant induction of indole phytoalexin biosynthesis in GO5 affect susceptibility towards the hemibiotrophic fungus Colletotrichum higginsianum. Combining histological, biochemical, and molecular assays, we found that the accumulation of the phytoalexin camalexin was comparable between GO genotypes and cat2-2 in the absence of pathogen. Compared with wild-type, GO5 showed improved resistance after light-shift-mediated production of H2 O2 , whereas cat2-2 became more susceptible and allowed significantly more pathogen entry. Unlike GO5, cat2-2 suffered from severe oxidative stress after light shifts, as indicated by glutathione pool size and oxidation state. We discuss a connection between elevated oxidative stress and dampened induction of salicylic acid mediated defense in cat2-2. Genetic analyses demonstrated that induced resistance of GO5 is dependent on WRKY33, but not on camalexin production. We propose that indole carbonyl nitriles might play a role in defense against C. higginsianum.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Colletotrichum , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Colletotrichum/metabolismo , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo
2.
Fungal Genet Biol ; 114: 42-52, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29580862

RESUMO

In most organisms, galactose is metabolized via the Leloir pathway, which is conserved from bacteria to mammals. Utilization of galactose requires a close interplay of the metabolic enzymes, as misregulation or malfunction of individual components can lead to the accumulation of toxic intermediate compounds. For the phytopathogenic basidiomycete Ustilago maydis, galactose is toxic for wildtype strains, i.e. leads to growth repression despite the presence of favorable carbon sources as sucrose. The galactose sensitivity can be relieved by two independent modifications: (1) by disruption of Hxt1, which we identify as the major transporter for galactose, and (2) by a point mutation in the gene encoding the galactokinase Gal1, the first enzyme of the Leloir pathway. The mutation in gal1(Y67F) leads to reduced enzymatic activity of Gal1 and thus may limit the formation of putatively toxic galactose-1-phosphate. However, systematic deletions and double deletions of different genes involved in galactose metabolism point to a minor role of galactose-1-phosphate in galactose toxicity. Our results show that molecular triggers for galactose toxicity in U. maydis differ from yeast and mammals.


Assuntos
Galactose/metabolismo , Ustilago/enzimologia , Ustilago/genética , Sequência de Aminoácidos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Galactoquinase/genética , Galactoquinase/metabolismo , Galactosefosfatos/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Redes e Vias Metabólicas , Mutagênese , Deleção de Sequência
3.
J Exp Bot ; 68(7): 1697-1713, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338908

RESUMO

Barley (Hordeum vulgare L.) is among the most stress-tolerant crops; however, not much is known about the genetic and environmental control of metabolic adaptation of barley to abiotic stresses. We have subjected a genetically diverse set of 81 barley accessions, consisting of Mediterranean landrace genotypes and German elite breeding lines, to drought and combined heat and drought stress at anthesis. Our aim was to (i) investigate potential differences in morphological, physiological, and metabolic adaptation to the two stress scenarios between the Mediterranean and German barley genotypes and (ii) identify metabolic quantitative trait loci (mQTLs). To this end, we have genotyped the investigated barley lines with an Illumina iSelect 9K array and analyzed a set of 57 metabolites from the primary C and N as well as antioxidant metabolism in flag leaves under control and stress conditions. We found that drought-adapted genotypes attenuate leaf carbon metabolism much more strongly than elite lines during drought stress adaptation. Furthermore, we identified mQTLs for flag leaf γ-tocopherol, glutathione, and succinate content by association genetics that co-localize with genes encoding enzymes of the pathways producing these antioxidant metabolites. Our results provide the molecular basis for breeding barley cultivars with improved abiotic stress tolerance.


Assuntos
Secas , Hordeum/anatomia & histologia , Hordeum/fisiologia , Temperatura Alta/efeitos adversos , Locos de Características Quantitativas , Adaptação Fisiológica , Hordeum/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Estresse Fisiológico
4.
Plant Physiol ; 166(3): 1506-18, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25274985

RESUMO

In plants, membrane-bound receptor kinases are essential for developmental processes, immune responses to pathogens and the establishment of symbiosis. We previously identified the Arabidopsis (Arabidopsis thaliana) receptor kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 (IOS1) as required for successful infection with the downy mildew pathogen Hyaloperonospora arabidopsidis. We report here that IOS1 is also required for full susceptibility of Arabidopsis to unrelated (hemi)biotrophic filamentous oomycete and fungal pathogens. Impaired susceptibility in the absence of IOS1 appeared to be independent of plant defense mechanism. Instead, we found that ios1-1 plants were hypersensitive to the plant hormone abscisic acid (ABA), displaying enhanced ABA-mediated inhibition of seed germination, root elongation, and stomatal opening. These findings suggest that IOS1 negatively regulates ABA signaling in Arabidopsis. The expression of ABA-sensitive COLD REGULATED and RESISTANCE TO DESICCATION genes was diminished in Arabidopsis during infection. This effect on ABA signaling was alleviated in the ios1-1 mutant background. Accordingly, ABA-insensitive and ABA-hypersensitive mutants were more susceptible and resistant to oomycete infection, respectively, showing that the intensity of ABA signaling affects the outcome of downy mildew disease. Taken together, our findings suggest that filamentous (hemi)biotrophs attenuate ABA signaling in Arabidopsis during the infection process and that IOS1 participates in this pathogen-mediated reprogramming of the host.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Interações Hospedeiro-Patógeno , Proteínas Quinases/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Mutação , Oomicetos/patogenicidade , Peronospora/patogenicidade , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Transdução de Sinais
5.
J Exp Bot ; 66(3): 957-71, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25428995

RESUMO

Tocopherol cyclase, encoded by the gene SUCROSE EXPORT DEFECTIVE1, catalyses the second step in the synthesis of the antioxidant tocopherol. Depletion of SXD1 activity in maize and potato leaves leads to tocopherol deficiency and a 'sugar export block' phenotype that comprises massive starch accumulation and obstruction of plasmodesmata in paraveinal tissue by callose. We grew two transgenic StSXD1:RNAi potato lines with severe tocopherol deficiency under moderate light conditions and subjected them to salt stress. After three weeks of salt exposure, we observed a strongly reduced sugar exudation rate and a lack of starch mobilization in leaves of salt-stressed transgenic plants, but not in wild-type plants. However, callose accumulation in the vasculature declined upon salt stress in all genotypes, indicating that callose plugging of plasmodesmata was not the sole cause of the sugar export block phenotype in tocopherol-deficient leaves. Based on comprehensive gene expression analyses, we propose that enhanced responsiveness of SnRK1 target genes in mesophyll cells and altered redox regulation of phloem loading by SUT1 contribute to the attenuation of sucrose export from salt-stressed SXD:RNAi source leaves. Furthermore, we could not find any indication that elevated oxidative stress may have served as a trigger for the salt-induced carbohydrate phenotype of SXD1:RNAi transgenic plants. In leaves of the SXD1:RNAi plants, sodium accumulation was diminished, while proline accumulation and pools of soluble antioxidants were increased. As supported by phytohormone contents, these differences seem to increase longevity and prevent senescence of SXD:RNAi leaves under salt stress.


Assuntos
Metabolismo dos Carboidratos , Glucanos/metabolismo , Proteínas de Plantas/metabolismo , Cloreto de Sódio/metabolismo , Solanum tuberosum/metabolismo , Tocoferóis/metabolismo , Estresse Oxidativo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/genética , Estresse Fisiológico
6.
Sci Rep ; 9(1): 9470, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263124

RESUMO

Tocopherols and tocotrienols, commonly referred to as vitamin E, are essential compounds in food and feed. Due to their lipophilic nature they protect biomembranes by preventing the propagation of lipid-peroxidation especially during oxidative stress. Since their synthesis is restricted to photosynthetic organisms, plant-derived products are the major source of natural vitamin E. In the present study the genetic basis for high vitamin E accumulation in leaves and grains of different barley (Hordeum vulgare L.) accessions was uncovered. A genome wide association study (GWAS) allowed the identification of two genes located on chromosome 7H, homogentisate phytyltransferase (HPT-7H) and homogentisate geranylgeranyltransferase (HGGT) that code for key enzymes controlling the accumulation of tocopherols in leaves and tocotrienols in grains, respectively. Transcript profiling showed a correlation between HPT-7H expression and vitamin E content in leaves. Allele sequencing allowed to decipher the allelic variation of HPT-7H and HGGT genes corresponding to high and low vitamin E contents in the respective tissues. Using the obtained sequence information molecular markers have been developed which can be used to assist smart breeding of high vitamin E barley varieties. This will facilitate the selection of genotypes more tolerant to oxidative stress and producing high-quality grains.


Assuntos
Hordeum , Folhas de Planta , Sementes , Vitamina E , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Estudo de Associação Genômica Ampla , Hordeum/genética , Hordeum/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Vitamina E/genética , Vitamina E/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA