RESUMO
The primary aim of this study was to evaluate the "clearance concept" as a tool for describing the behavior of xenobiotic movement into and through soils. As an example, degradation of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) with the formation of metabolites 2-chloro-6-isopropylamino-s-triazine (desethylatrazine) and 2-chloro-4-ethylamino-s-triazine (desisopropylatrazine) was investigated. Atrazine was sprayed post-emergently in doses of 0.125 or 0.5 g active ingredient/m(2) each on four test plots. Soil type was a sandy-loam, on which corn (Zea mays L.) was cultivated. Soil samples were taken as cores of 0.2 m depth 0, 1, 2, 4, 8, 12, 16 and 20 weeks after application of atrazine, and analyzed by HPLC. Soil concentrations of atrazine were highly correlated (r=0.993, p< 0.001) between the two applications of 0.125 g/m(2) and 0.5 g/m(2). Up to 50% of the atrazine was measured as metabolites during the whole vegetation period. Clearance of atrazine from soil was calculated as the total load of atrazine divided by the area under the soil atrazine concentration time curve. Soil atrazine clearance was calculated as 5.13 +/- SD 1.10 and 5.17 +/- SD 1.02 liter of soil per day for doses of 0.125 g/m(2) and 0.5 g/m(2), respectively (from a "soil unit" of 1 × 1 × 0.2 meter). The clearance concept might be a tool for risk assessment of xenobiotics.