Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Public Health ; 20(1): 1067, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631289

RESUMO

BACKGROUND: Informal recycling of electronic waste (e-waste) releases particulate matter (PM) into the ambient air. Human exposure to PM has been reported to induce adverse effects on cardiovascular health. However, the impact of PM on the cardiovascular health of e-waste recyclers in Ghana has not been studied. Although intake of micronutrient-rich diet is known to modify these PM-induced adverse health effects, no data are available on the relationship between micronutrient status of e-waste recyclers and the reported high-level exposure to PM. We therefore investigated whether the intake of micronutrient-rich diets ameliorates the adverse effects of ambient exposure to PM2.5 on blood pressure (BP). METHODS: This study was conducted among e-waste and non-e-waste recyclers from March 2017 to October 2018. Dietary micronutrient (Fe, Ca, Mg, Se, Zn, and Cu) intake was assessed using a 2-day 24-h recall. Breathing zone PM2.5 was measured with a real-time monitor. Cardiovascular indices such as systolic BP (SBP), diastolic BP (DBP), and pulse pressure (PP) were measured using a sphygmomanometer. Ordinary least-squares regression models were used to estimate the joint effects of ambient exposure to PM2.5 and dietary micronutrient intake on cardiovascular health outcomes. RESULTS: Fe was consumed in adequate quantities, while Ca, Se, Zn, Mg, and Cu were inadequately consumed among e-waste and non-e-waste recyclers. Dietary Ca, and Fe intake was associated with reduced SBP and PP of e-waste recyclers. Although PM2.5 levels were higher in e-waste recyclers, exposures in the control group also exceeded the WHO 24-h guideline value (25 µg/m3). Exposure to 1 µg/m3 of PM2.5 was associated with an increased heart rate (HR) among e-waste recyclers. Dietary Fe intake was associated with a reduction in systolic blood pressure levels of e-waste recyclers after PM exposure. CONCLUSIONS: Consistent adequate dietary Fe intake was associated with reduced effects of PM2.5 on SBP of e-waste recyclers overtime. Nonetheless, given that all other micronutrients are necessary in ameliorating the adverse effects of PM on cardiovascular health, nutrition-related policy dialogues are required. Such initiatives would help educate informal e-waste recyclers and the general population on specific nutrients of concern and their impact on the exposure to ambient air pollutants.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Sistema Cardiovascular/efeitos dos fármacos , Dieta/métodos , Resíduo Eletrônico/efeitos adversos , Micronutrientes/administração & dosagem , Adulto , Poluentes Atmosféricos/toxicidade , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Inquéritos sobre Dietas , Exposição Ambiental/efeitos adversos , Feminino , Gana , Humanos , Masculino , Estado Nutricional , Doenças Profissionais/etiologia , Doenças Profissionais/prevenção & controle , Exposição Ocupacional/efeitos adversos , Material Particulado/toxicidade , Gerenciamento de Resíduos
2.
Artigo em Inglês | MEDLINE | ID: mdl-32349371

RESUMO

Background: Direct and continuous exposure to particulate matter (PM), especially in occupational settings is known to impact negatively on respiratory health and lung function. Objective: To determine the association between concentrations of PM (2.5, 2.5-10 and 10 µm) in breathing zone and lung function of informal e-waste workers at Agbogbloshie. Methods: To evaluate lung function responses to PM (2.5, 2.5-10 and 10 µm), we conducted a longitudinal cohort study with three repeated measures among 207 participants comprising 142 healthy e-waste workers from Agbogbloshie scrapyard and 65 control participants from Madina-Zongo in Accra, Ghana from 2017-2018. Lung function parameters (FVC, FEV1, FEV1/FVC, PEF, and FEF 25-75) and PM (2.5, 2.5-10 and 10 µm) concentrations were measured, corresponding to prevailing seasonal variations. Socio-demographic data, respiratory exposures and lifestyle habits were determined using questionnaires. Random effects models were then used to examine the effects of PM (2.5, 2.5-10 and 10 µm) on lung function. Results: The median concentrations of PM (2.5, 2.5-10 and 10 µm) were all consistently above the WHO ambient air standards across the study waves. Small effect estimates per IQR of PM (2.5, 2.5-10 and 10 µm) on lung function parameters were observed even after adjustment for potential confounders. However, a 10 µg increase in PM (2.5, 2.5-10 and 10 µm) was associated with decreases in PEF and FEF 25-75 by 13.3% % [ß = -3.133; 95% CI: -0.243, -0.022) and 26.6% [ß = -0.266; 95% CI: -0.437, 0.094]. E-waste burning and a history of asthma significantly predicted a decrease in PEF by 14.2% [ß = -0.142; 95% CI: -0.278, -0.008) and FEV1 by 35.8% [ß = -0.358; 95% CI: -0.590, 0.125] among e-waste burners. Conclusions: Direct exposure of e-waste workers to PM predisposes to decline in lung function and risk for small airway diseases such as asthma and COPD.


Assuntos
Poluentes Atmosféricos , Asma , Resíduo Eletrônico , Exposição Ocupacional , Material Particulado , Adulto , Poluentes Atmosféricos/toxicidade , Exposição Ambiental , Gana , Humanos , Estudos Longitudinais , Material Particulado/toxicidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA