RESUMO
Immunoglobulin G (IgG) antibodies are major drivers of inflammation during infectious and autoimmune diseases. In pooled serum IgG (IVIg), however, antibodies have a potent immunomodulatory and anti-inflammatory activity, but how this is mediated is unclear. We studied IgG-dependent initiation of resolution of inflammation in cytokine- and autoantibody-driven models of rheumatoid arthritis and found IVIg sialylation inhibited joint inflammation, whereas inhibition of osteoclastogenesis was sialic acid independent. Instead, IVIg-dependent inhibition of osteoclastogenesis was abrogated in mice lacking receptors Dectin-1 or FcγRIIb. Atomistic molecular dynamics simulations and super-resolution microscopy revealed that Dectin-1 promoted FcγRIIb membrane conformations that allowed productive IgG binding and enhanced interactions with mouse and human IgG subclasses. IVIg reprogrammed monocytes via FcγRIIb-dependent signaling that required Dectin-1. Our data identify a pathogen-independent function of Dectin-1 as a co-inhibitory checkpoint for IgG-dependent inhibition of mouse and human osteoclastogenesis. These findings may have implications for therapeutic targeting of autoantibody and cytokine-driven inflammation.
Assuntos
Artrite Reumatoide , Imunoglobulinas Intravenosas , Lectinas Tipo C , Receptores de IgG , Animais , Humanos , Camundongos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Membrana Celular/metabolismo , Imunoglobulinas Intravenosas/administração & dosagem , Lectinas Tipo C/metabolismo , Camundongos Endogâmicos C57BL , Osteoclastos/metabolismo , Processamento de Proteína Pós-Traducional , Receptores de IgG/metabolismoRESUMO
Dendritic cells (DCs) are major regulators of innate and adaptive immune responses. DCs can be classified into plasmacytoid DCs and conventional DCs (cDCs) type 1 and 2. Murine and human cDC1 share the mRNA expression of XCR1. Murine studies indicated a specific role of the XCR1-XCL1 axis in the induction of immune responses. Here, we describe that human cDC1 can be distinguished into XCR1- and XCR1+ cDC1 in lymphoid as well as nonlymphoid tissues. Steady-state XCR1+ cDC1 display a preactivated phenotype compared to XCR1- cDC1. Upon stimulation, XCR1+ cDC1, but not XCR1- cDC1, secreted high levels of inflammatory cytokines as well as chemokines. This was associated with enhanced activation of NK cells mediated by XCR1+ cDC1. Moreover, XCR1+ cDC1 excelled in inhibiting replication of Influenza A virus. Further, under DC differentiation conditions, XCR1- cDC1 developed into XCR1+ cDC1. After acquisition of XCR1 expression, XCR1- cDC1 secreted comparable level of inflammatory cytokines. Thus, XCR1 is a marker of terminally differentiated cDC1 that licenses the antiviral effector functions of human cDC1, while XCR1- cDC1 seem to represent a late immediate precursor of cDC1.
Assuntos
Células Dendríticas , Células Matadoras Naturais , Humanos , Diferenciação Celular , CitocinasRESUMO
Exploiting inflammasome activation in dendritic cells (DCs) is a promising approach to fight cancer and to augment adjuvant-induced immune responses. As inflammasome formation is typically accompanied by pyroptosis, hyperactivation-defined as inflammasome activation in the absence of pyroptosis-represents a mechanism of circumventing cell death of DCs while simultaneously benefitting from inflammasome signaling. We previously demonstrated a unique specialization for inflammasome responses and hyperactivation of human cDC2 among all human DC subsets. As recent investigations revealed heterogeneity among the human cDC2 population, we aimed to analyze whether the two recently identified cDC2 subpopulations DC2 and DC3 harbor similar or different inflammasome characteristics. Here, we report that both DC2 and DC3 are inflammasome competent. We show that DC3 generally induce stronger inflammasome responses, which are associated with higher levels of cell death. Although DC2 release lower levels of inflammasome-dependent IL-1ß, they induce stronger CD4+ T cell responses than DC3, which are predominantly skewed toward a TH 1/TH 17 phenotype. Thus, mainly DC2 seem to be able to enter a state of hyperactivation, resulting in enhanced T cell stimulatory capacity.
Assuntos
Inflamassomos , Piroptose , Humanos , Inflamassomos/metabolismo , Transdução de Sinais , Imunidade , Células Dendríticas , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismoRESUMO
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various nonlymphoid tissues. DC are sentinels of the immune system present in almost every mammalian organ. Since they represent a rare cell population, DC need to be extracted from organs with protocols that are specifically developed for each tissue. This article provides detailed protocols for the preparation of single-cell suspensions from various mouse nonlymphoid tissues, including skin, intestine, lung, kidney, mammary glands, oral mucosa and transplantable tumors. Furthermore, our guidelines include comprehensive protocols for multiplex flow cytometry analysis of DC subsets and feature top tricks for their proper discrimination from other myeloid cells. With this collection, we provide guidelines for in-depth analysis of DC subsets that will advance our understanding of their respective roles in healthy and diseased tissues. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all coauthors, making it an essential resource for basic and clinical DC immunologists.
Assuntos
Células Dendríticas , Pele , Animais , Humanos , Citometria de Fluxo , Células Mieloides , Rim , MamíferosRESUMO
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Within this article, detailed protocols are presented that allow for the generation of single cell suspensions from human lymphohematopoietic tissues including blood, spleen, thymus, and tonsils with a focus on the subsequent analysis of DC via flow cytometry, as well as flow cytometric cell sorting of primary human DC. Further, prepared single cell suspensions as well as cell sorter-purified DC can be subjected to other applications including cellular enrichment procedures, RNA sequencing, functional assays, and many more. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
RESUMO
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human DC from lymphoid organs, and various non-lymphoid tissues. Within this chapter, detailed protocols are presented that allow for the generation of single-cell suspensions from mouse lymphohematopoietic tissues including spleen, peripheral lymph nodes, and thymus, with a focus on the subsequent analysis of DC by flow cytometry. However, prepared single-cell suspensions can be subjected to other applications including sorting and cellular enrichment procedures, RNA sequencing, Western blotting, and many more. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
RESUMO
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Recent studies have provided evidence for an increasing number of phenotypically distinct conventional DC (cDC) subsets that on one hand exhibit a certain functional plasticity, but on the other hand are characterized by their tissue- and context-dependent functional specialization. Here, we describe a selection of assays for the functional characterization of mouse and human cDC. The first two protocols illustrate analysis of cDC endocytosis and metabolism, followed by guidelines for transcriptomic and proteomic characterization of cDC populations. Then, a larger group of assays describes the characterization of cDC migration in vitro, ex vivo, and in vivo. The final guidelines measure cDC inflammasome and antigen (cross)-presentation activity. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
RESUMO
Dendritic cells (DCs) populate nearly all tissues and represent the central orchestrators of immunity. Here, we present a protocol for the mild but efficient preparation of single-cell suspensions from multiple murine tissues and the downstream analysis of the DC network via high-parameter flow cytometry. Additionally, we provide evaluation strategies that facilitate the stringent separation of the DC family from other myeloid cells, particularly macrophages and monocytes, and include an in-depth assessment of DC-intrinsic heterogeneity. For complete details on the use and execution of this protocol, please refer to Amon et al.1.
Assuntos
Células Dendríticas , Citometria de Fluxo , Animais , Células Dendríticas/citologia , Citometria de Fluxo/métodos , Camundongos , Camundongos Endogâmicos C57BL , Macrófagos/citologia , Macrófagos/metabolismoRESUMO
Over the last decade, multiple studies have investigated the heterogeneity of murine conventional dendritic cells type 2 (cDC2s). However, their phenotypic similarity with monocytes and macrophages renders their clear identification challenging. By creating a protein atlas utilizing multiparameter flow cytometry, we show that ESAM+ cDC2s are a specialized feature of the spleen strongly differing in their proteome from other cDC2s. In contrast, all other tissues are populated by Clec12A+ cDC2s or Clec12A- cDC2s (high or low for Fcγ receptors, C-type lectin receptors, and CD11b, respectively), rendering Clec12A+ cDC2s classical sentinels. Further, expression analysis of CD301b, Clec12A, and FcγRIIB/III provides a conserved definition of cDC2 heterogeneity, including the discovery of putative FcγRIIB/III+ DC3s across tissues. Finally, our data reveal that cell identity (ontogeny) dictates the proteome that is further fine-tuned by the tissue environment on macrophages and dendritic cells (DCs), while monocytes and plasmacytoid DCs (pDCs) display subset intrinsic default settings.
Assuntos
Monócitos , Proteoma , Animais , Camundongos , Proteoma/metabolismo , Citometria de Fluxo , Células Dendríticas/metabolismoRESUMO
Breast cancer is the most common malignancy in women worldwide and a highly heterogeneous disease. Four different subtypes are described that differ in the expression of hormone receptors as well as the growth factor receptor HER2. Treatment modalities and survival rate depend on the subtype of breast cancer. However, it is still not clear which patients benefit from immunotherapeutic approaches such as checkpoint blockade. Thus, we aimed to decipher the immune cell signature of the different breast cancer subtypes based on high-dimensional flow cytometry followed by unbiased approaches. Here, we show that the frequency of NK cells is reduced in Luminal A and B as well as triple negative breast cancer and that the phenotype of residual NK cells is changed toward regulatory CD11b-CD16- NK cells. Further, we found higher frequencies of PD-1+ CD4+ and CD8+ T cells in triple negative breast cancer. Moreover, while Luminal A-type breast cancer was enriched for CD14+ cDC2 (named type 3 DC (DC3)), CD14- cDC2 (named DC2) were more frequent in triple negative breast cancer. In contrast, HER2-enriched breast cancer did not show major alterations in the composition of the immune cell compartment in the tumor microenvironment. These findings suggest that patients with Luminal A- and B-type as well as triple negative breast cancer might benefit from immunotherapeutic approaches targeting NK cells.
Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Receptor ErbB-2/metabolismo , Linfócitos T CD8-Positivos , Citometria de Fluxo , Microambiente TumoralRESUMO
We developed a phenotypic screening platform for the functional exploration of dendritic cells (DC). Here, we report a genome-wide CRISPR screen that revealed BCL2 as an endogenous inhibitor of DC function. Knockout of BCL2 enhanced DC antigen presentation and activation as well as the capacity of DCs to control tumors and to synergize with PD-1 blockade. The pharmacologic BCL2 inhibitors venetoclax and navitoclax phenocopied these effects and caused a cDC1-dependent regression of orthotopic lung cancers and fibrosarcomas. Thus, solid tumors failed to respond to BCL2 inhibition in mice constitutively devoid of cDC1, and this was reversed by the infusion of DCs. Moreover, cDC1 depletion reduced the therapeutic efficacy of BCL2 inhibitors alone or in combination with PD-1 blockade and treatment with venetoclax caused cDC1 activation, both in mice and in patients. In conclusion, genetic and pharmacologic BCL2 inhibition unveils a DC-specific immune checkpoint that restrains tumor immunosurveillance. SIGNIFICANCE: BCL2 inhibition improves the capacity of DCs to stimulate anticancer immunity and restrain cancer growth in an immunocompetent context but not in mice lacking cDC1 or mature T cells. This study indicates that BCL2 blockade can be used to sensitize solid cancers to PD-1/PD-L1-targeting immunotherapy. This article is featured in Selected Articles from This Issue, p. 2293.
Assuntos
Antineoplásicos , Neoplasias , Humanos , Animais , Camundongos , Células Dendríticas , Receptor de Morte Celular Programada 1 , Monitorização Imunológica , Camundongos Knockout , Neoplasias/tratamento farmacológico , Neoplasias/genética , Antineoplásicos/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/genéticaRESUMO
Inflammasomes are cytosolic multiprotein complexes that crucially contribute to host defense against pathogens but are also involved in the pathogenesis of autoinflammatory diseases. Inflammasome formation leads to activation of effector caspases (caspase-1, 4, 5, or 11), the proteolytic maturation of IL-1ß and IL-18 as well as cleavage of the pore-forming protein Gasdermin D. Dendritic cells are major regulators of immune responses as they bridge innate and adaptive immunity. We here summarize the current knowledge on inflammasome expression and formation in murine bone marrow-, human monocyte-derived as well as murine and human primary dendritic cells. Further, we discuss both, the beneficial and detrimental, involvement of inflammasome activation in dendritic cells in cancer, infections, and autoimmune diseases. As inflammasome activation is typically accompanied by Gasdermin d-mediated pyroptosis, which is an inflammatory form of programmed cell death, inflammasome formation in dendritic cells seems ill-advised. Therefore, we propose that hyperactivation, which is inflammasome activation without the induction of pyroptosis, may be a general model of inflammasome activation in dendritic cells to enhance Th1, Th17 as well as cytotoxic T cell responses.
Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Inflamassomos/metabolismo , Animais , Biomarcadores , Comunicação Celular/genética , Comunicação Celular/imunologia , Citocinas/metabolismo , Suscetibilidade a Doenças/imunologia , Humanos , Imunomodulação , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismoRESUMO
Confocal immunofluorescence microscopy is an advanced imaging technique routinely applied in the laboratory and clinics. Histological analyses are performed from tissue material. In general, a single fluorochrome per laser is employed, limiting simultaneous analysis to four antigens in one staining with a conventional 4-laser line microscope. Here, we describe a protocol for combining fluorochromes with the same excitation but different emission properties that allows for the analysis of six different antigens in confocal immunofluorescence microscopy with a conventional 4-laser line microscope. The proposed multiplexed method permits the identification and characterization of complex cell populations in rare tissue material.
Assuntos
Imunofluorescência/métodos , Lasers , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Corantes Fluorescentes , Humanos , Microscopia Confocal/métodosRESUMO
Allograft-specific regulatory T cells (Treg cells) are crucial for long-term graft acceptance after transplantation. Although adoptive Treg cell transfer has been proposed, major challenges include graft-specificity and stability. Thus, there is an unmet need for the direct induction of graft-specific Treg cells. We hypothesized a synergism of the immunotolerogenic effects of rapamycin (mTOR inhibition) and plerixafor (CXCR4 antagonist) for Treg cell induction. Thus, we performed fully-mismatched heart transplantations and found combination treatment to result in prolonged allograft survival. Moreover, fibrosis and myocyte lesions were reduced. Although less CD3+ T cell infiltrated, higher Treg cell numbers were observed. Noteworthy, this was accompanied by a plerixafor-dependent plasmacytoid dendritic cells-(pDCs)-mobilization. Furthermore, in vivo pDC-depletion abrogated the plerixafor-mediated Treg cell number increase and reduced allograft survival. Our pharmacological approach allowed to increase Treg cell numbers due to pDC-mediated immune regulation. Therefore pDCs can be an attractive immunotherapeutic target in addition to plerixafor treatment.
Assuntos
Células Dendríticas/imunologia , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/metabolismo , Transplante de Coração , Imunomodulação , Receptores CXCR4/antagonistas & inibidores , Aloenxertos , Animais , Benzilaminas/farmacologia , Biomarcadores , Ciclamos/farmacologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Sinergismo Farmacológico , Rejeição de Enxerto/diagnóstico , Sobrevivência de Enxerto/efeitos dos fármacos , Sobrevivência de Enxerto/imunologia , Transplante de Coração/efeitos adversos , Transplante de Coração/métodos , Camundongos , Prognóstico , Sirolimo/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Imunologia de Transplantes , Resultado do TratamentoRESUMO
Ileal epithelial cell apoptosis and the local microbiota modulate the effects of oxaliplatin against proximal colon cancer by modulating tumor immunosurveillance. Here, we identified an ileal immune profile associated with the prognosis of colon cancer and responses to chemotherapy. The whole immune ileal transcriptome was upregulated in poor-prognosis patients with proximal colon cancer, while the colonic immunity of healthy and neoplastic areas was downregulated (except for the Th17 fingerprint) in such patients. Similar observations were made across experimental models of implanted and spontaneous murine colon cancer, showing a relationship between carcinogenesis and ileal inflammation. Conversely, oxaliplatin-based chemotherapy could restore a favorable, attenuated ileal immune fingerprint in responders. These results suggest that chemotherapy inversely shapes the immune profile of the ileum-tumor axis, influencing clinical outcome.
Assuntos
Neoplasias do Colo/fisiopatologia , Doenças do Íleo/complicações , Íleo/patologia , Animais , Humanos , Camundongos , PrognósticoRESUMO
Lipid cell membranes not only represent the physical boundaries of cells. They also actively participate in many cellular processes. This contribution is facilitated by highly complex mixtures of different lipids and incorporation of various membrane proteins. One group of membrane-associated receptors are Fc receptors (FcRs). These cell-surface receptors are crucial for the activity of most immune cells as they bind immunoglobulins such as immunoglobulin G (IgG). Based on distinct mechanisms of IgG binding, two classes of Fc receptors are now recognized: the canonical type I FcγRs and select C-type lectin receptors newly referred to as type II FcRs. Upon IgG immune complex induced cross-linking, these receptors are known to induce a multitude of cellular effector responses in a cell-type dependent manner, including internalization, antigen processing, and presentation as well as production of cytokines. The response is also determined by specific intracellular signaling domains, allowing FcRs to either positively or negatively modulate immune cell activity. Expression of cell-type specific combinations and numbers of receptors therefore ultimately sets a threshold for induction of effector responses. Mechanistically, receptor cross-linking and localization to lipid rafts, i.e., organized membrane microdomains enriched in intracellular signaling proteins, were proposed as major determinants of initial FcR activation. Given that immune cell membranes might also vary in their lipid compositions, it is reasonable to speculate, that the cell membrane and especially lipid rafts serve as an additional regulator of FcR activity. In this article, we aim to summarize the current knowledge on the interplay of lipid rafts and IgG binding FcRs with a focus on the plasma membrane composition and receptor localization in immune cells, the proposed mechanisms underlying this localization and consequences for FcR function with respect to their immunoregulatory capacity.
Assuntos
Membrana Celular/imunologia , Receptores de IgG/imunologia , Animais , Humanos , Bicamadas Lipídicas/imunologiaRESUMO
Dendritic cells (DCs) orchestrate adaptive immune responses. In healthy individuals, DCs are drivers and fine-tuners of T cell responses directed against invading pathogens or cancer cells. In parallel, DCs control autoreactive T cells, thereby maintaining T cell tolerance. Under various disease conditions, a disruption of this delicate balance can lead to chronic infections, tumor evasion, or autoimmunity. While great efforts have been made to unravel the origin and development of this powerful cell type in mice, only little is known about the ontogeny of human DCs. Here, we summarize the current understanding of the developmental path of DCs from hematopoietic stem cells to fully functional DCs in their local tissue environment and provide a template for the identification of DCs across various tissues.
Assuntos
Células Dendríticas/citologia , Células Dendríticas/imunologia , Animais , Autoimunidade , Diferenciação Celular/imunologia , Microambiente Celular/imunologia , Células Dendríticas/classificação , Células-Tronco Hematopoéticas/classificação , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Humanos , Tolerância Imunológica , Camundongos , Modelos Imunológicos , Especificidade de Órgãos , FenótipoRESUMO
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
RESUMO
Inflammatory bowel diseases (IBDs) are characterized by chronic, inflammatory gastrointestinal lesions and often require life-long treatment with immunosuppressants and repetitive surgical interventions. Despite progress in respect to the characterization of molecular mechanisms e.g. exerted by TNF-alpha, currently clinically approved therapeutics fail to provide long-term disease control for most patients. The transcription factor interferon regulatory factor 4 (IRF4) has been shown to play important developmental as well as functional roles within multiple immune cells. In the context of colitis, a T cell-intrinsic role of IRF4 in driving immune-mediated gut pathology is established. Here, we conversely addressed the impact of IRF4 inactivation in non-T cells on T cell driven colitis in vivo. Employing the CD4+CD25- naïve T cell transfer model, we found that T cells fail to elicit colitis in IRF4-deficient compared to IRF4-proficient Rag1-/- mice. Reduced colitis activity in the absence of IRF4 was accompanied by hampered T cell expansion both within the mesenteric lymph node (MLN) and colonic lamina propria (cLP). Furthermore, the influx of various myeloids, presumably inflammation-promoting cells was abrogated overall leading to a less disrupted intestinal barrier. Mechanistically, gene profiling experiments revealed a Th17 response dominated molecular expression signature in colon tissues of IRF4-proficient, colitic Rag1-/- but not in colitis-protected Rag1-/-Irf4-/- mice. Colitis mitigation in Rag1-/-Irf4-/- T cell recipients resulted in reduced frequencies and absolute numbers of IL-17a-producing T cell subsets in MLN and cLP possibly due to a regulation of conventional dendritic cell subset 2 (cDC2) known to impact Th17 differentiation. Together, extending the T cell-intrinsic role for IRF4 in the context of Th17 cell driven colitis, the provided data demonstrate a Th17-inducing and thereby colitis-promoting role of IRF4 through a T cell-extrinsic mechanism highlighting IRF4 as a putative molecular master switch among transcriptional regulators driving immune-mediated intestinal inflammation through both T cell-intrinsic and T cell-extrinsic mechanisms. Future studies need to further dissect IRF4 controlled pathways within distinct IRF4-expressing myeloid cell types, especially cDC2s, to elucidate the precise mechanisms accounting for hampered Th17 formation and, according to our data, the predominant mechanism of colitis protection in Rag1-/-Irf4-/- T cell receiving mice.
Assuntos
Colite/imunologia , Proteínas de Homeodomínio/imunologia , Fatores Reguladores de Interferon/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante , Animais , Colite/patologia , Colo/patologia , Proteínas de Homeodomínio/genética , Fatores Reguladores de Interferon/genética , Camundongos Endogâmicos C57BL , Camundongos TransgênicosRESUMO
Dendritic cells (DCs) are professional antigen-presenting cells of the immune system. Upon sensing pathogenic material in their environment, DCs start to mature, which includes cellular processes, such as antigen uptake, processing and presentation, as well as upregulation of costimulatory molecules and cytokine secretion. During maturation, DCs detach from peripheral tissues, migrate to the nearest lymph node, and find their way into the correct position in the net of the lymph node microenvironment to meet and interact with the respective T cells. We hypothesize that the maturation of DCs is well prepared and optimized leading to processes that alter various cellular characteristics from mechanics and metabolism to membrane properties. Here, we investigated the mechanical properties of monocyte-derived dendritic cells (moDCs) using real-time deformability cytometry to measure cytoskeletal changes and found that mature moDCs were stiffer compared to immature moDCs. These cellular changes likely play an important role in the processes of cell migration and T cell activation. As lipids constitute the building blocks of the plasma membrane, which, during maturation, need to adapt to the environment for migration and DC-T cell interaction, we performed an unbiased high-throughput lipidomics screening to identify the lipidome of moDCs. These analyses revealed that the overall lipid composition was significantly changed during moDC maturation, even implying an increase of storage lipids and differences of the relative abundance of membrane lipids upon maturation. Further, metadata analyses demonstrated that lipid changes were associated with the serum low-density lipoprotein (LDL) and cholesterol levels in the blood of the donors. Finally, using lipid packing imaging we found that the membrane of mature moDCs revealed a higher fluidity compared to immature moDCs. This comprehensive and quantitative characterization of maturation associated changes in moDCs sets the stage for improving their use in clinical application.