Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Mol Cell Cardiol ; 183: 81-97, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37714510

RESUMO

Obesity and metabolic disorders are increasing in epidemic proportions, leading to poor outcomes including heart failure. With a growing recognition of the effect of adipose tissue dysfunction on heart disease, it is less well understood how the heart can influence systemic metabolic homeostasis. Even less well understood is sex differences in cardiometabolic responses. Previously, our lab investigated the role of the amino-terminus of GRK2 in cardiometabolic remodeling using transgenic mice with cardiac restricted expression of a short peptide, ßARKnt. Male mice preserved insulin sensitivity, enhanced metabolic flexibility and adipose tissue health, elicited cardioprotection, and improved cardiac metabolic signaling. To examine the effect of cardiac ßARKnt expression on cardiac and metabolic function in females in response to diet-induced obesity, we subjected female mice to high fat diet (HFD) to trigger cardiac and metabolic adaptive changes. Despite equivalent weight gain, ßARKnt mice exhibited improved glucose tolerance and insulin sensitivity. However, ßARKnt mice displayed a progressive reduction in energy expenditure during cold challenge after acute and chronic HFD stress. They also demonstrated reduced cardiac function and increased markers of maladaptive remodeling and tissue injury, and decreased or aberrant metabolic signaling. ßARKnt mice exhibited reduced lipid deposition in the brown adipose tissue (BAT), but delayed or decreased markers of BAT activation and function suggested multiple mechanisms contributed to the decreased thermogenic capacity. These data suggest a non-canonical cardiac regulation of BAT lipolysis and function that highlights the need for studies elucidating the mechanisms of sex-specific responses to metabolic dysfunction.


Assuntos
Doenças Cardiovasculares , Resistência à Insulina , Feminino , Masculino , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Transgênicos , Doenças Cardiovasculares/metabolismo , Metabolismo Energético , Termogênese , Camundongos Endogâmicos C57BL
2.
FASEB J ; 36(12): e22644, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36415994

RESUMO

Maternal obesity (MO) during pregnancy is linked to increased and premature risk of age-related metabolic diseases in the offspring. However, the underlying molecular mechanisms still remain not fully understood. Using a well-established nonhuman primate model of MO, we analyzed tissue biopsies and plasma samples obtained from post-pubertal offspring (3-6.5 y) of MO mothers (n = 19) and from control animals born to mothers fed a standard diet (CON, n = 13). All offspring ate a healthy chow diet after weaning. Using untargeted gas chromatography-mass spectrometry metabolomics analysis, we quantified a total of 351 liver, 316 skeletal muscle, and 423 plasma metabolites. We identified 58 metabolites significantly altered in the liver and 46 in the skeletal muscle of MO offspring, with 8 metabolites shared between both tissues. Several metabolites were changed in opposite directions in males and females in both liver and skeletal muscle. Several tissue-specific and 4 shared metabolic pathways were identified from these dysregulated metabolites. Interestingly, none of the tissue-specific metabolic changes were reflected in plasma. Overall, our study describes characteristic metabolic perturbations in the liver and skeletal muscle in MO offspring, indicating that metabolic programming in utero persists postnatally, and revealing potential novel mechanisms that may contribute to age-related metabolic diseases later in life.


Assuntos
Obesidade Materna , Humanos , Animais , Masculino , Feminino , Gravidez , Desmame , Obesidade/metabolismo , Dieta , Músculo Esquelético/metabolismo , Fígado/metabolismo , Estilo de Vida , Puberdade
3.
Ann Nutr Metab ; 78(3): 147-155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35472668

RESUMO

BACKGROUND: Dilated cardiomyopathy (DCM) is the most common form of heart muscle disease characterized by progressive dilatation and ventricular dysfunction. Metabolomics is an emerging and powerful discipline that provides a global information on the phenotype of mammalian systems via the study of endogenous and exogenous metabolites in cells, tissues, and biofluids. These studies aid in the identification of biomarkers to prevent diseases in later life or help to early detect onset of diseases as well as aiding in the elucidation of disease mechanisms. SUMMARY: Metabolomics provides a unique opportunity to discover novel biomarkers for DCM. This review demonstrates evidence of metabolite-based biomarkers useful for predicting, diagnosing, and monitoring therapeutic interventions of DCM. Key metabolites identified as potential biomarkers for diagnosing DCM include acylcarnitines, succinic acid, malate, methylhistidine, aspartate, methionine, and phenylalanine. In terms of differentiating DCM from ischemic cardiomyopathy, potential biomarkers including 1-pyrroline-2-carboxylate, norvaline, lysophosphatidylinositol (16:0/0:0), phosphatidylglycerol, fatty acid esters of hydroxy fatty acid, and phosphatidylcholine were identified. Acylcarnitines, isoleucine and linoleic acid, and tryptophan were the main biomarkers to monitor treatment response to DCM. Mapping metabolites to metabolic pathways revealed dysregulation of branch-chain amino acid, glycolysis, tricarboxylic acid cycle, and triacylglycerol and pentose phosphate metabolism, which have the therapeutic potential for DCM. This review shows several limitations including the use of small sample sizes, lack of interpretation of age and sex differences in most studies, and the fact that studies have so far been limited to case-control study designs. KEY MESSAGES: Metabolites have close proximity to disease phenotype. With recent advances in metabolomics field, potential biomarkers for DCM have been identified based on studies using different biological and metabolomics technologies. However, multicenter studies with larger populations that will lead to validation of these identified biomarkers to enable their clinical translation and utilization are still needed.


Assuntos
Cardiomiopatia Dilatada , Animais , Biomarcadores , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Ácido Linoleico , Masculino , Mamíferos , Metabolômica
4.
Reproduction ; 159(5): 627-641, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32163913

RESUMO

The link between male diet and sperm quality has received significant investigation. However, the impact diet and dietary supplements have on the testicular environment has been examined to a lesser extent. Here, we establish the impact of a sub-optimal low protein diet (LPD) on testicular morphology, apoptosis and serum fatty acid profiles. Furthermore, we define whether supplementing a LPD with specific methyl donors abrogates any detrimental effects of the LPD. Male C57BL6 mice were fed either a control normal protein diet (NPD; 18% protein; n = 8), an isocaloric LPD (LPD; 9% protein; n = 8) or an LPD supplemented with methyl donors (MD-LPD; choline chloride, betaine, methionine, folic acid, vitamin B12; n = 8) for a minimum of 7 weeks. Analysis of male serum fatty acid profiles by gas chromatography revealed elevated levels of saturated fatty acids and lower levels of mono- and polyunsaturated fatty acids in MD-LPD males when compared to NPD and/or LPD males. Testes of LPD males displayed larger seminiferous tubule cross section area when compared to NPD and MD-LPD males, while MD-LPD tubules displayed a larger luminal area. Furthermore, TUNNEL staining revealed LPD males possessed a reduced number of tubules positive for apoptosis, while gene expression analysis showed MD-LPD testes displayed decreased expression of the pro-apoptotic genes Bax, Csap1 and Fas when compared to NPD males. Finally, testes from MD-LPD males displayed a reduced telomere length but increased telomerase activity. These data reveal the significance of sub-optimal nutrition for paternal metabolic and reproductive physiology.


Assuntos
Dieta com Restrição de Proteínas , Suplementos Nutricionais , Testículo/efeitos dos fármacos , Testículo/fisiologia , Animais , Betaína/administração & dosagem , Colina/administração & dosagem , Ácidos Graxos/sangue , Ácido Fólico/administração & dosagem , Masculino , Metionina/administração & dosagem , Camundongos , Vitamina B 12/administração & dosagem
5.
Br J Nutr ; 123(6): 601-609, 2020 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-31779730

RESUMO

Dietary protein insufficiency has been linked to excessive TAG storage and non-alcoholic fatty liver disease (NAFLD) in developing countries. Hepatic TAG accumulation following a low-protein diet may be due to altered peroxisomal, mitochondrial and gut microbiota function. Hepatic peroxisomes and mitochondria normally mediate metabolism of nutrients to provide energy and substrates for lipogenesis. Peroxisome biogenesis and activities can be modulated by odd-chain fatty acids (OCFA) and SCFA that are derived from gut bacteria, for example, propionate and butyrate. Also produced during amino acid metabolism by peroxisomes and mitochondria, propionate and butyrate concentrations correlate inversely with risk of obesity, insulin resistance and NAFLD. In this horizon-scanning review, we have compiled available evidence on the effects of protein malnutrition on OCFA production, arising from loss in mitochondrial, peroxisomal and gut microbiota function, and its association with lipid accumulation in the liver. The methyl donor amino acid composition of dietary protein is an important contributor to liver function and lipid storage; the presence and abundance of dietary branched-chain amino acids can modulate the composition and metabolic activity of the gut microbiome and, on the other hand, can affect protective OCFA and SCFA production in the liver. In preclinical animal models fed with low-protein diets, specific amino acid supplementation can ameliorate fatty liver disease. The association between low dietary protein intake and fatty liver disease is underexplored and merits further investigation, particularly in vulnerable groups with dietary protein restriction in developing countries.


Assuntos
Proteínas Alimentares/administração & dosagem , Hepatopatia Gordurosa não Alcoólica/etiologia , Deficiência de Proteína/complicações , Ácidos Graxos/metabolismo , Humanos , Fígado/metabolismo
6.
bioRxiv ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37662261

RESUMO

The liver is critical for functions that support metabolism, immunity, digestion, detoxification, and vitamin storage. Aging is associated with severity and poor prognosis of various liver diseases such as nonalcoholic fatty liver disease (NAFLD). Previous studies have used multi-omic approaches to study liver diseases or to examine the effects of aging on the liver. However, to date, no studies have used an integrated omics approach to investigate aging-associated molecular changes in the livers of healthy female nonhuman primates. The goal of this study was to identify molecular changes associated with healthy aging in the livers of female baboons ( Papio sp., n=35) by integrating multiple omics data types (transcriptomics, proteomics, metabolomics) from samples across the adult age span. To integrate omics data, we performed unbiased weighted gene co-expression network analysis (WGCNA), and the results revealed 3 modules containing 3,149 genes and 33 proteins were positively correlated with age, and 2 modules containing 37 genes and 216 proteins were negatively correlated with age. Pathway enrichment analysis showed that unfolded protein response (UPR) and endoplasmic reticulum (ER) stress were positively associated with age, whereas xenobiotic metabolism and melatonin and serotonin degradation pathways were negatively associated with age. The findings of our study suggest that UPR and a reduction in reactive oxygen species generated from serotonin degradation could protect the liver from oxidative stress during the aging process in healthy female baboons.

7.
Neurobiol Aging ; 132: 109-119, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797463

RESUMO

The prefrontal cortex (PFC) has been implicated as a key brain region responsible for age-related cognitive decline. Little is known about aging-related molecular changes in PFC that may mediate these effects. To date, no studies have used untargeted discovery methods with integrated analyses to determine PFC molecular changes in healthy female primates. We quantified PFC changes associated with healthy aging in female baboons by integrating multiple omics data types (transcriptomics, proteomics, metabolomics) from samples across the adult age span. Our integrated omics approach using unbiased weighted gene co-expression network analysis to integrate data and treat age as a continuous variable, revealed highly interconnected known and novel pathways associated with PFC aging. We found Gamma-aminobutyric acid (GABA) tissue content associated with these signaling pathways, providing 1 potential biomarker to assess PFC changes with age. These highly coordinated pathway changes during aging may represent early steps for aging-related decline in PFC functions, such as learning and memory, and provide potential biomarkers to assess cognitive status in humans.


Assuntos
Disfunção Cognitiva , Multiômica , Humanos , Animais , Feminino , Envelhecimento/psicologia , Transdução de Sinais/genética , Córtex Pré-Frontal/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo
8.
Metabolites ; 12(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35629933

RESUMO

Gas chromatography-coupled mass spectrometry (GC-MS) has been used in biomedical research to analyze volatile, non-polar, and polar metabolites in a wide array of sample types. Despite advances in technology, missing values are still common in metabolomics datasets and must be properly handled. We evaluated the performance of ten commonly used missing value imputation methods with metabolites analyzed on an HR GC-MS instrument. By introducing missing values into the complete (i.e., data without any missing values) National Institute of Standards and Technology (NIST) plasma dataset, we demonstrate that random forest (RF), glmnet ridge regression (GRR), and Bayesian principal component analysis (BPCA) shared the lowest root mean squared error (RMSE) in technical replicate data. Further examination of these three methods in data from baboon plasma and liver samples demonstrated they all maintained high accuracy. Overall, our analysis suggests that any of the three imputation methods can be applied effectively to untargeted metabolomics datasets with high accuracy. However, it is important to note that imputation will alter the correlation structure of the dataset and bias downstream regression coefficients and p-values.

9.
Int J Biochem Cell Biol ; 143: 106135, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34896612

RESUMO

Epidemiological studies show that higher circulating levels of odd chain saturated fatty acids (FA: C15:0 and C17:0) are associated with lower risk of metabolic disease. These odd chain saturated fatty acids (OCSFA) are produced by α-oxidation in peroxisomes, de novo lipogenesis, from the diet and by gut microbiota. Although present at low concentrations, they are of interest as potential targets to reduce metabolic disease risk. To determine whether OCSFA are affected by obesogenic diets, we have investigated whether high dietary fat intake affects the frequency of OCSFA-producing gut microbiota, liver lipid metabolism genes and circulating OCSFA. FA concentrations were determined in liver and serum from pathogen-free SPF C57BL/6 J mice fed either standard chow or a high fat diet (HFD; 60% calories as fat) for four and twelve weeks. Post-mortem mouse livers were analysed histologically for fat deposition by gas chromatography-mass spectrometry for FA composition and by qPCR for the lipid metabolic genes fatty acid desaturase 2 (FADS2), stearoyl CoA desaturase 1 (SCD1), elongation of long-chain fatty acids family member 6 (ELOVL6) and 2-hydroxyacyl-CoA lyase 1 (HACL). Gut microbiota in faecal pellets from the ileum were analysed by 16S RNA sequencing. A significant depletion of serum and liver C15:0 (>50%; P < 0.05) and liver C17:0 (>35%; P < 0.05) was observed in HFD-fed SPF mice in parallel with hepatic fat accumulation after four weeks. In addition, liver gene expression (HACL1, ELOVL6, SCD1 and FADS2) was lower (>50%; P < 0.05) and the relative abundance of beneficial C3:0-producing gut bacteria such as Akkermansia, Lactobacillus, Bifidobacterium was lower after HFD in SPF mice. In summary, high dietary fat intake reduces serum and liver OCSFA, OCSFA-producing gut microbiota and is associated with impaired liver lipid metabolism. Further studies are required to identify whether there is any beneficial effect of OCSFA and C3:0-producing gut bacteria to counter metabolic disease.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Animais , Masculino , Camundongos
10.
Redox Biol ; 36: 101595, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32574926

RESUMO

Oxysterols are critical regulators of inflammation and cholesterol metabolism in cells. They are oxidation products of cholesterol and may be differentially metabolised in subcellular compartments and in biological fluids. New analytical methods are needed to improve our understanding of oxysterol trafficking and the molecular interplay between the cellular compartments required to maintain cholesterol/oxysterol homeostasis. Here we describe a method for isolation of oxysterols using solid phase extraction and quantification by liquid chromatography-mass spectrometry, applied to tissue, cells and mitochondria. We analysed five monohydroxysterols; 24(S)-hydroxycholesterol, 25-hydroxycholesterol, 27-hydroxycholesterol, 7α-hydroxycholesterol, 7 ketocholesterol and three dihydroxysterols 7α-24(S)dihydroxycholesterol, 7α-25dihydroxycholesterol, 7α-27dihydroxycholesterol by LC-MS/MS following reverse phase chromatography. Our new method, using Triton and DMSO extraction, shows improved extraction efficiency and recovery of oxysterols from cellular matrix. We validated our method by reproducibly measuring oxysterols in mouse brain tissue and showed that mice fed a high fat diet had significantly lower levels of 24S/25diOHC, 27diOHC and 7ketoOHC. We measured oxysterols in mitochondria from peripheral blood mononuclear cells and highlight the importance of rapid cell isolation to minimise effects of handling and storage conditions on oxysterol composition in clinical samples. In addition, in vitro cell culture systems, of THP-1 monocytes and neuronal-like SH-SH5Y cells, showed mitochondrial-specific oxysterol metabolism and profiles were lineage specific. In summary, we describe a robust and reproducible method validated for improved recovery, quantitative linearity and detection, reproducibility and selectivity for cellular oxysterol analysis. This method enables subcellular oxysterol metabolism to be monitored and is versatile in its application to various biological and clinical samples.


Assuntos
Oxisteróis , Animais , Cromatografia Líquida , Hidroxicolesteróis , Leucócitos Mononucleares , Camundongos , Mitocôndrias , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA