Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Leukemia ; 36(11): 2634-2646, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36163264

RESUMO

Disease progression and relapse of chronic myeloid leukemia (CML) are caused by therapy resistant leukemia stem cells (LSCs), and cure relies on their eradication. The microenvironment in the bone marrow (BM) is known to contribute to LSC maintenance and resistance. Although leukemic infiltration of the spleen is a hallmark of CML, it is unknown whether spleen cells form a niche that maintains LSCs. Here, we demonstrate that LSCs preferentially accumulate in the spleen and contribute to disease progression. Spleen LSCs were located in the red pulp close to red pulp macrophages (RPM) in CML patients and in a murine CML model. Pharmacologic and genetic depletion of RPM reduced LSCs and decreased their cell cycling activity in the spleen. Gene expression analysis revealed enriched stemness and decreased myeloid lineage differentiation in spleen leukemic stem and progenitor cells (LSPCs). These results demonstrate that splenic RPM form a niche that maintains CML LSCs in a quiescent state, resulting in disease progression and resistance to therapy.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Humanos , Camundongos , Animais , Baço , Células-Tronco Neoplásicas/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mieloide/genética , Macrófagos/metabolismo , Progressão da Doença , Microambiente Tumoral
2.
Nat Commun ; 11(1): 1632, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32242021

RESUMO

Co-stimulatory signals, cytokines and transcription factors regulate the balance between effector and memory cell differentiation during T cell activation. Here, we analyse the role of the TRAF2-/NCK-interacting kinase (TNIK), a signaling molecule downstream of the tumor necrosis factor superfamily receptors such as CD27, in the regulation of CD8+ T cell fate during acute infection with lymphocytic choriomeningitis virus. Priming of CD8+ T cells induces a TNIK-dependent nuclear translocation of ß-catenin with consecutive Wnt pathway activation. TNIK-deficiency during T cell activation results in enhanced differentiation towards effector cells, glycolysis and apoptosis. TNIK signaling enriches for memory precursors by favouring symmetric over asymmetric cell division. This enlarges the pool of memory CD8+ T cells and increases their capacity to expand after re-infection in serial re-transplantation experiments. These findings reveal that TNIK is an important regulator of effector and memory T cell differentiation and induces a population of stem cell-like memory T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Coriomeningite Linfocítica/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Animais , Apoptose , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular , Humanos , Memória Imunológica , Ativação Linfocitária , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/fisiopatologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Via de Sinalização Wnt
3.
Cancer Res ; 79(2): 346-359, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30389698

RESUMO

Hematopoiesis in patients with cancer is characterized by reduced production of red blood cells and an increase in myelopoiesis, which contributes to the immunosuppressive environment in cancer. Some tumors produce growth factors that directly stimulate myelopoiesis such as G-CSF or GM-CSF. However, for a majority of tumors that do not directly secrete hematopoietic growth factors, the mechanisms involved in the activation of myelopoiesis are poorly characterized. In this study, we document in different murine tumor models activated hematopoiesis with increased proliferation of long-term and short-term hematopoietic stem cells and myeloid progenitor cells. As a consequence, the frequency of myeloid-derived suppressor cells and its ratio to CD8+ T cells increased in tumor-bearing mice. Activation of hematopoiesis and myeloid differentiation in tumor-bearing mice was induced by TNFα, which was mainly secreted by activated CD4+ T cells. Therefore, the activated adaptive immune system in cancer induces emergency myelopoiesis and immunosuppression. SIGNIFICANCE: These findings characterize a regulatory circuit linking activated T cells to suppression of tumor-specific immune responses, providing a conceptual advance in the understanding of emergency-hematopoiesis in cancer and opening new targets for therapeutic approaches. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/2/346/F1.large.jpg.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Mielopoese/imunologia , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/patologia , Linfócitos T CD4-Positivos/patologia , Diferenciação Celular/imunologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/patologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Progenitoras Mieloides/imunologia , Células Progenitoras Mieloides/patologia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/patologia
4.
Oncogene ; 38(5): 622-636, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30171261

RESUMO

Oncogenic KRAS mutations comprise the largest subset of lung cancer defined by genetic alterations, but in the clinic no targeted therapies are available that effectively control mutational KRAS activation. Consequently, patients with KRAS-driven tumors are routinely treated with cytotoxic chemotherapy, which is often transiently effective owing to development of drug resistance. In this study, we show that hyperactivated mammalian target of rapamycin (mTOR) pathway is a characteristic hallmark of KRAS-mutant lung adenocarcinoma after chemotherapy treatment, and that KRAS-mutant lung cancer cells rely on persistent mTOR signaling to resist chemotherapeutic drugs. Coherently, mTOR inhibition circumvents the refractory phenotype and restores sensitivity of resistant KRAS-mutant lung cancer cells to chemotherapy. Importantly, drug combinations of clinically approved mTOR inhibitors and chemotherapy drugs synergize in inhibiting cell proliferation of KRAS-mutant cancer cells in vitro and in vivo, and the efficacy of this combination treatment correlates with the magnitude of mTOR activity induced by chemotherapy alone. These results pinpoint mTOR as a mechanism of resistance to chemotherapy in KRAS-mutant lung cancer and validate a rational and readily translatable strategy that combines mTOR inhibitors with standard chemotherapy to treat KRAS-mutant adenocarcinoma, the most common and deadliest lung cancer subset.


Assuntos
Adenocarcinoma de Pulmão/enzimologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/enzimologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas p21(ras)/genética , Serina-Treonina Quinases TOR/genética
5.
J Exp Med ; 210(3): 605-21, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23401488

RESUMO

Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasia arising from the oncogenic break point cluster region/Abelson murine leukemia viral oncogene homolog 1 translocation in hematopoietic stem cells (HSCs), resulting in a leukemia stem cell (LSC). Curing CML depends on the eradication of LSCs. Unfortunately, LSCs are resistant to current treatment strategies. The host's immune system is thought to contribute to disease control, and several immunotherapy strategies are under investigation. However, the interaction of the immune system with LSCs is poorly defined. In the present study, we use a murine CML model to show that LSCs express major histocompatibility complex (MHC) and co-stimulatory molecules and are recognized and killed by leukemia-specific CD8(+) effector CTLs in vitro. In contrast, therapeutic infusions of effector CTLs into CML mice in vivo failed to eradicate LSCs but, paradoxically, increased LSC numbers. LSC proliferation and differentiation was induced by CTL-secreted IFN-γ. Effector CTLs were only able to eliminate LSCs in a situation with minimal leukemia load where CTL-secreted IFN-γ levels were low. In addition, IFN-γ increased proliferation and colony formation of CD34(+) stem/progenitor cells from CML patients in vitro. Our study reveals a novel mechanism by which the immune system contributes to leukemia progression and may be important to improve T cell-based immunotherapy against leukemia.


Assuntos
Interferon gama/fisiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Células-Tronco Neoplásicas/patologia , Linfócitos T Citotóxicos/imunologia , Adulto , Idoso , Sequência de Aminoácidos , Animais , Proliferação de Células , Citotoxicidade Imunológica , Humanos , Imunoterapia Adotiva , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Dados de Sequência Molecular , Células-Tronco Neoplásicas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA