Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 360(1795): 1165-78, 2002 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12804272

RESUMO

As computer power increases, so too does the range of interesting biomolecular phenomena and properties that can be simulated. It is now possible to simulate complicated protein conformational changes at ambient or physiological temperatures. In this regard, we are attempting to map the conformational transitions of the normal, cellular prion protein (PrP(C)) to its infectious scrapie isoform (PrP(Sc)), which causes neurodegenerative diseases in many mammals. These two forms have identical sequences and are conformational isomers, with heightened formation of beta-sheet structure in the scrapie form. Conversion can be triggered by lowering the pH, but thus far it has been impossible to characterize the conformational change at high resolution using experimental methods. Therefore, to investigate the effect of acidic pH on PrP conformation, we have performed molecular-dynamics simulations of hamster, human and bovine forms of the prion protein in water at neutral and low pH. In all cases the core of the protein is well maintained at neutral pH. At low pH, however, the protein is more dynamic, and the sheet-like structure increases both by lengthening of the native beta-sheet and by addition of a portion of the N-terminus to widen the sheet by another 2-3 strands.


Assuntos
Simulação por Computador , Modelos Moleculares , Príons/química , Conformação Proteica , Animais , Bovinos , Cricetinae , Humanos , Concentração de Íons de Hidrogênio , Proteínas do Tecido Nervoso/química , Proteínas PrPC/química , Proteínas PrPSc/química , Príons/classificação , Desnaturação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Especificidade da Espécie
2.
Nat Struct Biol ; 9(2): 112-6, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11753432

RESUMO

Mutations in domain 2 (D2, residues 151-266) of the actin-binding protein gelsolin cause familial amyloidosis-Finnish type (FAF). These mutations, D187N or D187Y, lead to abnormal proteolysis of plasma gelsolin at residues 172-173 and a second hydrolysis at residue 243, resulting in an amyloidogenic fragment. Here we present the structure of human gelsolin D2 at 1.65 A and find that Asp 187 is part of a Cd2+ metal-binding site. Two Ca2+ ions are required for a conformational transition of gelsolin to its active form. Differential scanning calorimetry (DSC) and molecular dynamics (MD) simulations suggest that the Cd2+-binding site in D2 is one of these two Ca2+-binding sites and is essential to the stability of D2. Mutation of Asp 187 to Asn disrupts Ca2+ binding in D2, leading to instabilities upon Ca2+ activation. These instabilities make the domain a target for aberrant proteolysis, thereby enacting the first step in the cascade leading to FAF.


Assuntos
Amiloidose Familiar/genética , Cádmio/metabolismo , Gelsolina/genética , Gelsolina/metabolismo , Mutação/genética , Substituição de Aminoácidos/genética , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Varredura Diferencial de Calorimetria , Simulação por Computador , Cristalografia por Raios X , Finlândia , Gelsolina/química , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA