Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 48(11): 3087-3090, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262287

RESUMO

The Dammann grating (DG), which redistributes a collimated laser beam into a spot array with a uniform intensity, is a widely adopted approach for profile measurement. Conventional DGs for dense spot projection are binary phase gratings with precisely designed groove structures, which suffer from low efficiency, poor uniformity, and a hard-to-fabricate fine feature size when utilized for a large field of view (FOV). Here, we propose a new, to the best of our knowledge, hybrid DG architecture consisting of two different grating periods which effectively generates an engineering M2 × N2 spot array with a non-complex structural design. As a proof-of-concept, a dual-period hybrid DG with a two-scale grating period ratio of 11.88 µm/95.04 µm (∼1/8) is designed and fabricated as a means to generate a dense 72 × 72 diffraction spot array with a FOV of 17° × 17°. In addition, the DG exhibits superior performance, with a high efficiency (>60%) and a low non-uniformity (<18%) at a wavelength of 532 nm. This kind of hybrid DG constructed from photoresist patterns with a minimum feature size of ∼1.2 µm can be perfectly fabricated by maskless projection lithography for large-scale and low-cost production. The proposed dual-period hybrid DG can pave the way for depth-perception-related applications such as face unlocking and motion sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA