RESUMO
Glycolic acid is a useful and important α-hydroxy acid that has broad applications. Herein, the homogeneous ruthenium catalyzed reforming of aqueous ethylene glycol to generate glycolic acid as well as pure hydrogen gas, without concomitant CO2 emission, is reported. This approach provides a clean and sustainable direction to glycolic acid and hydrogen, based on inexpensive, readily available, and renewable ethylene glycol using 0.5â mol % of catalyst. In-depth mechanistic experimental and computational studies highlight key aspects of the PNNH-ligand framework involved in this transformation.
RESUMO
A unique mode of stoichiometric CO2 activation and reductive splitting based on metal-ligand-cooperation is described. The novel Ir hydride complexes [((t)Bu-PNP*)Ir(H)2] (2) ((t)Bu-PNP*, deprotonated (t)Bu-PNP ligand) and [((t)Bu-PNP)Ir(H)] (3) react with CO2 to give the dearomatized complex [((t)Bu-PNP*)Ir(CO)] (4) and water. Mechanistic studies have identified an adduct in which CO2 is bound to the ligand and metal, [((t)Bu-PNP-COO)Ir(H)2] (5), and a di-CO2 iridacycle [((t)Bu-PNP)Ir(H)(C2O4-κC,O)] (6). DFT calculations confirm the formation of 5 and 6 as reversibly formed side products, and suggest an η(1)-CO2 intermediate leading to the thermodynamic product 4. The calculations support a metal-ligand-cooperation pathway in which an internal deprotonation of the benzylic position by the η(1)-CO2 ligand leads to a carboxylate intermediate, which further reacts with the hydride ligand to give complex 4 and water.
RESUMO
The use of carbon dioxide for synthetic applications presents a major goal in modern homogeneous catalysis. Rhodium-hydride PNP pincer complex 1 is shown to add CO2 in two disparate pathways: one is the expected insertion of CO2 into the metal-hydride bond, and the other leads to reductive cleavage of CO2, involving metal-ligand cooperation. The resultant rhodium-carbonyl complex was found to be photoactive, enabling the activation of benzene and formation of a new benzoyl complex. Organometallic intermediate species were observed and characterized by NMR spectroscopy and X-ray crystallography. Based on the series of individual transformations, a sequence for the photocarbonylation of benzene using CO2 as the feedstock was constructed and demonstrated for the production of benzaldehyde from benzene.
RESUMO
Hydrogen has long been regarded as an ideal alternative clean energy vector to overcome the drawbacks of fossil technology. However, the direct utilization of hydrogen is challenging, due to low volumetric energy density of hydrogen gas and potential safety issues. Herein, we report an efficient and reversible liquid to liquid organic hydrogen carrier system based on inexpensive, readily available and renewable ethylene glycol. This hydrogen storage system enables the efficient and reversible loading and discharge of hydrogen using a ruthenium pincer complex, with a theoretical hydrogen storage capacity of 6.5 wt%.
RESUMO
Olefin metathesis catalysed by ruthenium has emerged at the frontier of modern synthetic chemistry. The desire to enhance catalyst stability, gain control over the catalytic process and deepen the understanding of the mechanisms of metathesis has yielded a class of latent ruthenium precatalysts of delayed initiation and with switchable activity. One of the main methodologies developed for this purpose has been the introduction of tethered carbene ligands. Herein we track the evolution of ruthenium based metathesis catalysts bearing chelated alkylidenes, from the early oxygen Hoveyda type benzylidenes to the latent sulphur containing complexes.