Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biogerontology ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177917

RESUMO

The gut microbiota (GM) produces various molecules that regulate the physiological functionality of the brain through the gut-brain axis (GBA). Studies suggest that alteration in GBA may lead to the onset and progression of various neurological dysfunctions. Moreover, aging is one of the prominent causes that contribute to the alteration of GBA. With age, GM undergoes a shift in population size and species of microflora leading to changes in their secreted metabolites. These changes also hamper communications among the HPA (hypothalamic-pituitary-adrenal), ENS (enteric nervous system), and ANS (autonomic nervous system). A therapeutic intervention that has recently gained attention in improving health and maintaining communication between the gut and the brain is calorie restriction (CR), which also plays a critical role in autophagy and neurogenesis processes. However, its strict regime and lifelong commitment pose challenges. The need is to produce similar beneficial effects of CR without having its rigorous compliance. This led to an exploration of calorie restriction mimetics (CRMs) which could mimic CR's functions without limiting diet, providing long-term health benefits. CRMs ensure the efficient functioning of the GBA through gut bacteria and their metabolites i.e., short-chain fatty acids, bile acids, and neurotransmitters. This is particularly beneficial for elderly individuals, as the GM deteriorates with age and the body's ability to digest the toxic accumulates declines. In this review, we have explored the beneficial effect of CRMs in extending lifespan by enhancing the beneficial bacteria and their effects on metabolite production, physiological conditions, and neurological dysfunctions including neurodegenerative disorders.

2.
Brain Res ; 1844: 149138, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39134259

RESUMO

Cognitive impairment is a prevalent co-morbidity associated with epilepsy. Emerging studies indicate that neuroinflammation could be a possible link between epilepsy and its comorbidities, including cognitive impairment. In this context, the roles of glial activation, proinflammatory mediators, and neuronal death have been well studied and correlated with epilepsy-associated cognitive impairment in animal studies. While recent reports have demonstrated the anti-epileptogenic and anti-convulsant actions of metformin, its effect on epilepsy associated cognitive deficit remains unknown. Therefore, the current study investigated the effect of metformin treatment on neuroinflammation, neurodegeneration, and cognitive deficits after inducing status epilepticus (SE) with lithium-pilocarpine in rats. Metformin treatment improved the hippocampal-dependent spatial and recognition memory in Morris water maze and Novel object recognition tasks, respectively. Further, metformin treatment attenuated microglial and astroglial activation, accompanied by reduced IL-1ß, COX-2 and NF-Ä¸ß gene expression. Additionally, metformin conferred neuroprotection by inhibiting the neuronal death as assessed by Nissl staining and transmission electron microscopy. These findings suggest that metformin holds promise as a therapeutic intervention for cognitive impairment associated with epilepsy, possibly through its modulation of glial activation and neuronal survival. Further research is needed to elucidate the precise mechanisms and to assess the long-term effect of metformin in epilepsy-associated cognitive impairment.

3.
Acta Diabetol ; 61(6): 791-805, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38483572

RESUMO

AIM: This study was undertaken to explicate the shared and distinctive genetic susceptibility and immune dysfunction in patients with T1D alone and T1D with CD (T1D + CD). METHODS: A total of 100 T1D, 50 T1D + CD and 150 healthy controls were recruited. HLA-DRB1/DQB1 alleles were determined by PCR-sequence-specific primer method, SNP genotyping for CTLA-4 and PTPN22 was done by simple probe-based SNP-array and genotyping for INS-23 Hph1 A/T was done by RFLP. Autoantibodies and cytokine estimation was done by ELISA. Immune-regulation was analysed by flow-cytometry. Clustering of autoantigen epitopes was done by epitope cluster analytical tool. RESULTS: Both T1D alone and T1D + CD had a shared association of DRB1*03:01, DRB1*04, DRB3*01:07/15 and DQB1*02. DRB3*01:07/15 confers the highest risk for T1D with relative risk of 11.32 (5.74-22.31). Non-HLA gene polymorphisms PTPN22 and INS could discriminate between T1D and T1D + CD. T1D + CD have significantly higher titers of autoantibodies, expression of costimulatory molecules on CD4 and CD8 cells, and cytokine IL-17A and TGF-ß1 levels compared to T1D patients. Epitopes from immunodominant regions of autoantigens of T1D and CD clustered together with 40% homology. CONCLUSION: Same HLA genes provide susceptibility for both T1D and CD. Non-HLA genes CTLA4, PTPN22 and INS provide further susceptibility while different polymorphisms in PTPN22 and INS can discriminate between T1D and T1D + CD. Epitope homology between autoantigens of two diseases further encourages the two diseases to occur together. The T1D + CD being more common in females along with co-existence of thyroid autoimmunity, and have more immune dysregulated state than T1D alone.


Assuntos
Autoantígenos , Doença Celíaca , Diabetes Mellitus Tipo 1 , Predisposição Genética para Doença , Proteína Tirosina Fosfatase não Receptora Tipo 22 , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Índia/epidemiologia , Doença Celíaca/genética , Doença Celíaca/imunologia , Feminino , Masculino , Autoantígenos/imunologia , Autoantígenos/genética , Criança , Adolescente , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Adulto , Cadeias beta de HLA-DQ/genética , Autoanticorpos/imunologia , Autoanticorpos/sangue , Cadeias HLA-DRB1/genética , Adulto Jovem , Polimorfismo de Nucleotídeo Único , Pré-Escolar , Antígeno CTLA-4/genética , Genótipo , Estudos de Casos e Controles
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA