Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 125(38): 8397-8403, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34546046

RESUMO

Understanding the mechanisms of aggregation-induced emission (AIE) is essential for the rational design and deployment of AIEgens toward various applications. Such a deep mechanistic understanding demands a thorough investigation of the excited-state behaviors of AIEgens. However, because of considerable complexity and rapid decay, these behaviors are often not experimentally accessible and the mechanistic comprehension of many AIEgens is lacking. Herein, utilizing detailed quantum chemical calculations, we provide insights toward the AIE mechanism of 1-(N,N-dialkylamino)-naphthalene (DAN) derivatives. Our theoretical analysis, corroborated by experimental observations, leads to the discovery that modulating the formation of the twisted intramolecular charge transfer (TICT) state (caused by the rotation of the amino groups) and managing the steric hindrance to minimize solid-state intermolecular interactions provides a plausible explanation for the AIE characteristics of DAN derivatives. These results will inspire the deployment of the TICT mechanism as a useful design strategy toward AIEgen development.

2.
Soft Matter ; 11(27): 5400-7, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26053932

RESUMO

A "lotus-like" effect is applied to demonstrate the ability of the Leidenfrost water droplets to recover Cu particles on a heated Al substrate. Cu particles on the heated surface adhere to the rim of the Leidenfrost droplets and eventually coat the droplets' surface to form an aggregation. When Fe filings are added to the Cu particles, the aggregated mixture can then be collected using a strong rare earth magnet (NdFeB) upon evaporation of the water. We also show that the Leidenfrost effect can be effectively utilized to recover both hydrophobic (dust and activated carbon) and hydrophilic (SiO2 and MgO) particles from heated Al surfaces without any topographical modification or surfactant addition. Our results show that hydrophobic and hydrophilic materials can be collected with >92% and >96% effectiveness on grooved and smooth Al surfaces, respectively. Furthermore, we observed no significant differences in the amount of material collected above the Leidenfrost point within the tested temperature range (240 °C vs. 340 °C) as well as when the Al sheet was replaced with a Cu sheet as the substrate. However, we did observe that the Leidenfrost droplets were able to collect a greater amount of material when the working liquid was water than when it was ethanol. Our findings show promise in the development of an effective precious coinage metal filings recovery technology for application in the mint industry, as well as the self-cleaning of metallic and semiconductor surfaces where manual cleaning is not amenable.

3.
Nanotechnology ; 26(17): 175501, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25850830

RESUMO

In this paper we investigate O(2) sensing dynamics in BiFeO(3) (BFO) nanofibers at various concentrations and temperatures, by using a combined experiment and computer simulation approach. Samples of pristine BFO, Ni-doped BFO, and Pb-doped BFO nanofibers were prepared. By incorporating Ni and Pb, additional acceptor states are introduced in BFO. Density functional theory calculations show that Ni prefers to substitute Fe site while Pb substitutes Bi site, resulting in a new deep donor originating from Ni interstitial defects, along with oxygen vacancies (V(o)). We find that both the sensing response and recovery time are shorter in samples made of pristine BFO nanofibers than in Ni- and Pb-doped nanofiber samples. We interpret the observed sensing dynamics through charge transport theory of the major (acceptors) and minor (donors) carriers, and found that the minor carrier compensation plays a significant role in determining the response and recovery time of the sensor device. This minor carrier compensation charge transport mechanism will provide new insights into more robust sensor development strategies, and into the research of ion-electron coupling in chemical dynamics of semiconductors.

4.
Phys Chem Chem Phys ; 16(42): 23089-95, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25250701

RESUMO

We investigate the limiting electrical conductivity of BiFeO3 (BFO) nanofibers via first-principles modelling and experiments. Based on a semi-empirical approach, all transition metals are first screened for their suitability to form an acceptor in BFO. The resultant candidates (e.g., Ni, Cu and Ag) are further studied by more sophisticated electronic structure theory and experiments. Accordingly, a systematic approach in forecasting the electrical conduction in BFO nanofibers is established. The calculated results show that Ag(+) cations prefer substitutions of Bi(3+) while Ni(2+) and Cu(2+) prefer substitution of Fe(3+) sites to form acceptors. All three metals contribute to an increased overall hole concentration which may lead to a conductivity limit in BFO. These predictions were confirmed consistently through the synthesis and electrical testing of Ni-, Cu- and Ag-doped BFO nanofibers. Finally, our results indicate that the conductivity limit is approached by Ni doping in BFO. The methodology presented here may be extended to search for the doping conductivity limits of other semiconductors of interest.

5.
Sci Rep ; 13(1): 13290, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587205

RESUMO

By roughly mimicking the surface architectural design of dragonfly wings, novel bi-phasic 3D nanoflowers of MgO/Mg(OH)2 were successfully synthesized via the electrospinning technique. The 3D nanoflowers were coated over a commercial melamine sponge and extensively characterized by SEM, XRD, FTIR, and EDS. The formation of distinct dense 3D nano petals was revealed by SEM images whereby the mean petal thickness and mean distance between the adjacent petals were found to be 36 nm and 121 nm, respectively. The bactericidal activities of synthesized 3D nano-flowers coated melamine sponges were assessed against five different bacteria (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa). This study demonstrated significant bactericidal activity of MgO/Mg(OH)2 3D nanoflowers coated MS against Gram-positive and Gram-negative bacteria. Plausible bactericidal mechanisms include envelope deformation, penetration, and induction of oxidative stress. This study introduces novel bioinspired biomaterial with the capacity to reduce the risk associated with pathogenic bacterial infections, especially in medical devices.


Assuntos
Óxido de Magnésio , Odonatos , Animais , Óxido de Magnésio/farmacologia , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Escherichia coli
6.
Materials (Basel) ; 16(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37049217

RESUMO

Mica, a commonly occurring mineral, has significant potential for various applications due to its unique structure and properties. However, due to its non-Van Der Waals bonded structure, it is difficult to exfoliate mica into ultrathin nanosheets. In this work, we report a rapid solvothermal microwave synthesis of 2D mica with short reaction time and energy conservation. The resulting exfoliated 2D mica nanosheets (eMica nanosheets) were characterized by various techniques, and their ability to capture CO2 was tested by thermogravimetric analysis (TGA). Our results showed an 87% increase in CO2 adsorption capacity with eMica nanosheets compared to conventional mica. Further characterization by Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), as well as first-principles calculations, showed that the high specific surface area and deposited K2CO3 layer contribute to the increased CO2 adsorption on the mica nanosheets. These results speak to the potential of high-quality eMica nanosheets and efficient synthesis processes to open new avenues for new physical properties of 2D materials and the development of CO2 capture technologies.

7.
J Am Chem Soc ; 131(34): 12211-7, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19655794

RESUMO

In this report, an electrical detection scheme for the quantification of DNA using a nanogap sensor array is detailed. The prime objective is to develop a novel sensing procedure, based on the electronic transduction mechanism, which would mitigate the problems intrinsic to nanostructure-based biosensing devices. Design considerations of the sensor array take into account the feasibility of mass production in a cost-effective way by using standard silicon microfabrication technologies. The sensing mechanism relies on bridging the nanogap upon hybridization of the two termini of a target DNA with two different surface-bound capture probes, followed by a simple metallization step. About 2 orders of magnitude enhancement in conductance, as referred to a clean background (<1.0 pS) observed at a control sensor, was obtained in the presence of as little as 1.0 fM target DNA. This sensitivity is comparable to the best of electrochemical/electrical biosensors. A linear relationship between the conductance and the DNA concentration was obtained from 1.0 fM to 1.0 pM with an exceptional signal intensity of 2.1 x 10(4)% change per unit concentration. This change in conductivity is so large that it can unambiguously detect the concentration of DNA quantitatively and may obviate the need for target amplification used in current DNA tests. Moreover, the sensor array exhibited excellent single-base mismatch discrimination due to its unique vertically aligned nanostructure and the two-probe configuration.


Assuntos
DNA/análise , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , DNA/química , Sondas de DNA/química , Eletroquímica , Nanofios , Hibridização de Ácido Nucleico , Reprodutibilidade dos Testes , Prata/química
8.
J Phys Chem B ; 109(22): 11163-72, 2005 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-16852362

RESUMO

Carbon/molecule/copper molecular electronic junctions were fabricated by metal deposition of copper onto films of various thicknesses of fluorene (FL), biphenyl (BP), and nitrobiphenyl (NBP) covalently bonded to flat, graphitic carbon. A "crossed-wire" junction configuration provided high device yield and good junction reproducibility. Current/voltage characteristics were investigated for 69 junctions with various molecular structures and thicknesses and at several temperatures. The current/voltage curves for all cases studied were nearly symmetric, scan rate independent, repeatable at least thousands of cycles and exhibited negligible hysteresis. Junction conductance was strongly dependent on the dihedral angle between phenyl rings and on the nature of the molecule/copper "contact". Junctions made with NBP showed a decrease in conductivity of a factor of 1300 when the molecular layer thickness increased from 1.6 to 4.5 nm. The slope of ln(i) vs layer thickness for both BP and NBP was weakly dependent on applied voltage and ranged from 0.16 to 0.24 A(-1). These attenuation factors are similar to those observed for similar molecular layers on modified electrodes used to study electrochemical kinetics. All junctions studied showed weak temperature dependence in the range of approximately 325 to 214 K, implying activation barriers in the range of 0.06 to 0.15 eV. The carbon/molecule/copper junction structure provides a robust, reproducible platform for investigations of the dependence of electron transport in molecular junctions on both molecular structure and temperature. Furthermore, the results indicate that junction conductance is a strong function of molecular structure, rather than some artifact resulting from junction fabrication.

9.
Dalton Trans ; 43(28): 10787-93, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24879577

RESUMO

We employ first-principles methods to study the mechanism controlling the electrical conduction in BiFeO3 (BFO). We find that under oxygen-rich conditions, Bi vacancies (V(Bi)) have lower defect formation energy than O vacancies (V(O)) (-0.43 eV vs. 3.35 eV), suggesting that V(Bi) are the acceptor defects and control the conductivity of BFO, making it a p-type semiconductor. In order to obtain further insight into the conduction mechanism, we calculate the effect of donor (Sn(4+)) and acceptor (Pb(2+)) impurities in BFO. Results indicate that Sn impurities prefer to substitute Fe sites to form shallow donor defects, which compensate the acceptor levels derived from V(Bi). Meanwhile, Pb atoms favour the substitution of Bi sites to form acceptor defects, reducing the overall concentration of holes (h(+)). Theoretical findings were later surveyed by current-voltage characteristics of Sn- or Pb-doped BFO nanofibers. This study is of general interest in carrier transport in charge compensation semiconductors, and of particular relevance within the context of defect-mediated conductivity in BFO.

10.
Langmuir ; 24(13): 6698-704, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18522448

RESUMO

The interaction of evaporated Cu deposited on a series of porphyrins in monolayers covalently attached to Si(100) substrates was investigated using cyclic voltammetry and FTIR spectroscopy. Each porphyrin contains a triallyl tripod attached to the porphyrin via a p-phenylene unit. The tripod anchors the porphyrin to the Si(100) substrate via hydrosilylation of the allyl groups. Two of the porphyrins are Zn chelates that possess meso p-cyanophenyl substituentsone, ZnP-CND, contains a single group opposite (distal) to the tripodal surface anchor, whereas the other, ZnP-CNL, contains two groups orthogonal (lateral) to the surface anchor. A third Zn porphyrin, ZnP, containing nonreactive p-tolyl groups at all three nonanchoring meso positions, was examined for comparison. The fourth porphyrin, FbP-HD, is a metal-free species (free base) that contains nonreactive phenyl (distal) and p-tolyl groups (lateral) at the three nonanchoring meso positions. The fifth porphyrin, CuP-HD, is the Cu chelate of FbP-HD, and serves as a reference complex for evaluating the effects of Cu metal deposition onto FbP-HD. The studies indicate that all of the porphyrin monolayers are robust under the conditions of Cu deposition, experiencing no noticeable degradation. In addition, the Cu metal does not penetrate through the monolayer to form electrically conductive filaments. For the ZnP-CND monolayers, the deposited Cu quantitatively reacts/complexes with the distal cyano group. In contrast, for the ZnP-CNL monolayers no reaction/complexation of the lateral cyano groups is observed. For the FbP-HD monolayers, Cu deposition results in quantitative insertion of Cu into the free base porphyrin. Collectively, the studies demonstrate that porphyrin monolayers are amenable to direct deposition of Cu overlayers and that functionalization of the porphyrins can be used to mediate the attributes of the metal-molecule junction.

11.
Anal Chem ; 78(9): 3104-12, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16643000

RESUMO

Mono- and multilayers of nitroazobenzene (NAB), azobenzene (AB), nitrobiphenyl (NBP), biphenyl (BP), and fluorene (FL) were covalently bonded to flat pyrolyzed photoresist films (PPF) by electrochemical reduction of their diazonium derivatives. The structure and orientation of the molecular layers were probed with ATR-FT-IR and Raman spectroscopy. A hemispherical germanium ATR element used with p-polarized light at 65 degrees incidence angle yielded high signal/noise IR spectra for monolayer coverage of molecules on PPF. The IR spectra are dominated by in-plane vibrational modes in the 1000-2000-cm(-1) spectral range but also exhibit weaker out-of-plane deformations in the 650-1000-cm(-1) region. The average tilt angle with respect to the surface normal for the various molecules varied from 31.0 +/- 4.5 degrees for NAB to 44.2 +/- 5.4 degrees for FL with AB, NBP, and BP exhibiting intermediate adsorption geometries. Raman intensity ratios of NAB and AB for p- and s-polarized incident light support the conclusion that the chemisorbed molecules are in a predominantly upright orientation. The results unequivocally indicate that molecules electroreduced from their diazonium precursors are not chemisorbed flat on the PPF surface, but rather at an angle, similar to the behavior of Au/thiol self-assembled monolayers, Langmuir-Blodgett films, and porphyrin molecules chemisorbed thermally on silicon and PPF from alkyne and alkene precursors.


Assuntos
Grafite/química , Compostos Orgânicos/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Compostos Azo/análise , Compostos de Bifenilo/análise , Eletroquímica , Fluorenos/análise , Sensibilidade e Especificidade , Propriedades de Superfície
12.
J Am Chem Soc ; 128(21): 6965-74, 2006 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-16719477

RESUMO

A major challenge in molecular electronics and related fields entails the fabrication of elaborate molecular architectures on electroactive surfaces to yield hybrid molecular/semiconductor systems. A method has been developed for the stepwise synthesis of oligomers of porphyrins linked covalently via imide units. A triallyl-porphyrin bearing an amino group serves as the base unit on Si(100), and the alternating use of a dianhydride (3,3',4,4'-biphenyltetracarboxylic dianhydride) and a porphyrin-diamine for reaction enables the rapid and simple buildup of oligomers composed of 2-5 porphyrins. The properties of these porphyrin "multad" films on Si(100) were interrogated using a variety of techniques. The charge densities of the redox-active porphyrin oligomers were determined via electrochemical methods. The stepwise growth was evaluated in detail via Fourier transform infrared (FTIR) spectroscopy and by selected X-ray photoelectron spectroscopic (XPS) studies. The morphology was probed via AFM methods. Finally, the thickness was evaluated by using a combination of ellipsometry and AFM height profiling, accompanied by selected XPS studies. Collectively, these studies demonstrate that high charge density, ultrathin, multiporphyrin films of relatively well-controlled thickness can be grown in a stepwise fashion using the imide-forming reaction. The increased charge densities afforded by the porphyrin multads may prove important for the fabrication of molecular-based information-storage devices. This bottom-up process for construction of surface-tethered molecular architectures complements the top-down lithographic approach for construction of functional devices with nanoscale dimensions.

13.
Langmuir ; 21(24): 11105-12, 2005 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-16285778

RESUMO

Various aromatic and aliphatic alkynes and one alkene were covalently bonded to sp(2)-hybridized carbon surfaces by heat treatment in an argon atmosphere. X-ray photoelectron spectroscopy, Raman, and FTIR spectra of the modified surfaces showed that the molecules were intact after the 400 degrees C heat treatment but that the alkyne group had reacted with the surface to form a covalent bond. Alkynes with ferrocene and porphyrin centers exhibited chemically reversible voltammetric waves that could be cycled many times. Atomic force microscopy of the modified surfaces indicated a thickness of the molecular layer consistent with monolayer coverage, and surface coverage determined by voltammetry was also in the monolayer range. Raman spectroscopy of the porphyrin monolayers formed from a porphyrin alkyne showed no evidence for dimer formation, although multilayer formation may occur at undetected levels. FTIR spectra of the porphyrin-modified carbon surfaces were well-defined, similar to the parent molecule, and indicative of an average tilt angle between the porphyrin plane and the surface normal of 37 degrees . The bond between the molecular monolayer and the carbon surface was quite stable, withstanding sonication in tetrahydrofuran, mild aqueous acid and base, and repeated voltammetric cycling in propylene carbonate electrolyte. Heat treatment of alkynes and alkenes appears to be a generally useful method for modifying carbon surfaces, which can be applied to both aromatic and aliphatic molecules.

14.
Anal Chem ; 75(15): 3837-44, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-14572051

RESUMO

Contact mode atomic force microscopy (AFM) was used to intentionally scratch a monolayer deposited on a pyrolyzed photoresist film (PPF). The force was set to completely remove the monolayer but not to damage the underlying PPF surface. A line profile determined across the scratch with tapping mode AFM permitted determination of the monolayer thickness from the depth of the scratch. A statistical process was devised to avoid user bias in determining the monolayer thickness and was used to determine the thickness as a function of derivatization parameters. PPF surfaces modified by reduction of diazonium ions of stilbene, biphenyl, nitrobiphenyl, terphenyl, and nitroazobenzene (NAB) were scratched and their modification layer thicknesses determined. For single-scan derivatizations of 1 mM diazonium ions to -0.6 V versus Ag+/Ag, the biphenyl and stilbene monolayers exhibited thicknesses close to those expected for true monolayers. However, more extensive derivatization resulted in multilayers up to 6.3 nm thick for the case of NAB. Such multilayers imply that electrons are transmitted through the growing film during diazonium reduction, despite the fact that electron tunneling would not be expected to be operative over such long distances. The results are consistent with a conductance increase in the growing film, which yields a partially conductive layer that can support further diazonium ion reduction and additional layer growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA