Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(6): 1607-1619.e15, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30500539

RESUMO

In the healthy adult liver, most hepatocytes proliferate minimally. However, upon physical or chemical injury to the liver, hepatocytes proliferate extensively in vivo under the direction of multiple extracellular cues, including Wnt and pro-inflammatory signals. Currently, liver organoids can be generated readily in vitro from bile-duct epithelial cells, but not hepatocytes. Here, we show that TNFα, an injury-induced inflammatory cytokine, promotes the expansion of hepatocytes in 3D culture and enables serial passaging and long-term culture for more than 6 months. Single-cell RNA sequencing reveals broad expression of hepatocyte markers. Strikingly, in vitro-expanded hepatocytes engrafted, and significantly repopulated, the injured livers of Fah-/- mice. We anticipate that tissue repair signals can be harnessed to promote the expansion of otherwise hard-to-culture cell-types, with broad implications.


Assuntos
Antígenos de Diferenciação/biossíntese , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Hepatócitos/metabolismo , Esferoides Celulares/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Linhagem Celular Transformada , Células Hep G2 , Hepatócitos/transplante , Células Endoteliais da Veia Umbilical Humana , Humanos , Fígado/lesões , Fígado/metabolismo , Camundongos Knockout , Esferoides Celulares/transplante , Fatores de Tempo
2.
Proc Natl Acad Sci U S A ; 119(30): e2203849119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867815

RESUMO

Cell proliferation is tightly controlled by inhibitors that block cell cycle progression until growth signals relieve this inhibition, allowing cells to divide. In several tissues, including the liver, cell proliferation is inhibited at mitosis by the transcriptional repressors E2F7 and E2F8, leading to formation of polyploid cells. Whether growth factors promote mitosis and cell cycle progression by relieving the E2F7/E2F8-mediated inhibition is unknown. We report here on a mechanism of cell division control in the postnatal liver, in which Wnt/ß-catenin signaling maintains active hepatocyte cell division through Tbx3, a Wnt target gene. The TBX3 protein directly represses transcription of E2f7 and E2f8, thereby promoting mitosis. This cascade of sequential transcriptional repressors, initiated by Wnt signals, provides a paradigm for exploring how commonly active developmental signals impact cell cycle completion.


Assuntos
Hepatócitos , Mitose , Proteínas Repressoras , Via de Sinalização Wnt , Animais , Hepatócitos/citologia , Hepatócitos/metabolismo , Camundongos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas com Domínio T/metabolismo , beta Catenina/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(26): E5954-E5962, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891676

RESUMO

In the adult mouse spinal cord, the ependymal cell population that surrounds the central canal is thought to be a promising source of quiescent stem cells to treat spinal cord injury. Relatively little is known about the cellular origin of ependymal cells during spinal cord development, or the molecular mechanisms that regulate ependymal cells during adult homeostasis. Using genetic lineage tracing based on the Wnt target gene Axin2, we have characterized Wnt-responsive cells during spinal cord development. Our results revealed that Wnt-responsive progenitor cells are restricted to the dorsal midline throughout spinal cord development, which gives rise to dorsal ependymal cells in a spatially restricted pattern. This is contrary to previous reports that suggested an exclusively ventral origin of ependymal cells, suggesting that ependymal cells may retain positional identities in relation to their neural progenitors. Our results further demonstrated that in the postnatal and adult spinal cord, all ependymal cells express the Wnt/ß-catenin signaling target gene Axin2, as well as Wnt ligands. Genetic elimination of ß-catenin or inhibition of Wnt secretion in Axin2-expressing ependymal cells in vivo both resulted in impaired proliferation, indicating that Wnt/ß-catenin signaling promotes ependymal cell proliferation. These results demonstrate the continued importance of Wnt/ß-catenin signaling for both ependymal cell formation and regulation. By uncovering the molecular signals underlying the formation and regulation of spinal cord ependymal cells, our findings thus enable further targeting and manipulation of this promising source of quiescent stem cells for therapeutic interventions.


Assuntos
Proteína Axina/metabolismo , Proliferação de Células , Neuroglia/metabolismo , Medula Espinal/crescimento & desenvolvimento , Via de Sinalização Wnt/fisiologia , Animais , Proteína Axina/genética , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neuroglia/citologia , Medula Espinal/citologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
4.
PLoS Genet ; 12(10): e1006352, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27741240

RESUMO

TGFßs act through canonical and non-canonical pathways, and canonical signals are transduced via Smad2 and Smad3. However, the contribution of canonical vs. non-canonical pathways in cartilage is unknown because the role of Smad2 in chondrogenesis has not been investigated in vivo. Therefore, we analyzed mice in which Smad2 is deleted in cartilage (Smad2CKO), global Smad3-/- mutants, and crosses of these strains. Growth plates at birth from all mutant strains exhibited expanded columnar and hypertrophic zones, linked to increased proliferation in resting chondrocytes. Defects were more severe in Smad2CKO and Smad2CKO;Smad3-/- (Smad2/3) mutant mice than in Smad3-/- mice, demonstrating that Smad2 plays a role in chondrogenesis. Increased levels of Ihh RNA, a key regulator of chondrocyte proliferation and differentiation, were seen in prehypertrophic chondrocytes in the three mutant strains at birth. In accordance, TGFß treatment decreased Ihh RNA levels in primary chondrocytes from control (Smad2fx/fx) mice, but inhibition was impaired in cells from mutants. Consistent with the skeletal phenotype, the impact on TGFß-mediated inhibition of Ihh RNA expression was more severe in Smad2CKO than in Smad3-/- cells. Putative Smad2/3 binding elements (SBEs) were identified in the proximal Ihh promoter. Mutagenesis demonstrated a role for three of them. ChIP analysis suggested that Smad2 and Smad3 have different affinities for these SBEs, and that the repressors SnoN and Ski were differentially recruited by Smad2 and Smad3, respectively. Furthermore, nuclear localization of the repressor Hdac4 was decreased in growth plates of Smad2CKO and double mutant mice. TGFß induced association of Hdac4 with Smad2, but not with Smad3, on the Ihh promoter. Overall, these studies revealed that Smad2 plays an essential role in the development of the growth plate, that both Smads 2 and 3 inhibit Ihh expression in the neonatal growth plate, and suggested they accomplish this by binding to distinct SBEs, mediating assembly of distinct repressive complexes.


Assuntos
Diferenciação Celular/genética , Proliferação de Células/genética , Condrogênese/genética , Proteína Smad2/genética , Proteína Smad3/genética , Animais , Cartilagem/crescimento & desenvolvimento , Cartilagem/metabolismo , Condrócitos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Lâmina de Crescimento/crescimento & desenvolvimento , Proteínas Hedgehog/genética , Histona Desacetilases/genética , Camundongos , Regiões Promotoras Genéticas , Fator de Crescimento Transformador beta/genética
5.
Am J Infect Control ; 52(3): 284-292, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37579972

RESUMO

BACKGROUND: Clostridioides difficile (C difficile) is one of the most common health care-associated infections that negatively impact patient care and health care costs. This study takes a unique approach to C difficile infection (CDI) control by investigating key prevention obstacles through the perspectives of Stanford health care (SHC) frontline health care personnel. METHODS: An anonymous qualitative survey was distributed at SHC, focusing on knowledge and practice of CDI prevention guidelines, as well as education, communication, and perspectives regarding CDI at SHC. RESULTS: 112 survey responses were analyzed. Our findings unveiled gaps in personnel's knowledge of C difficile diagnostic guidelines and revealed a need for targeted communication and guideline-focused education. Health care staff shared preferences and recommendations, with the majority recommending enhanced communication of guidelines and information as a strategy for reducing CDI rates. The findings were then used to design and propose internal recommendations for SHC to mitigate the gaps found. DISCUSSION: Many guidelines and improvement strategies are based on strong scientific and medical foundations; however, it is important to ask whether these guidelines are effectively translated into practice. Frontline health care workers hold empirical perspectives that could be key in infection control. CONCLUSIONS: Our findings emphasize the importance of including frontline health care personnel in infection prevention decision-making processes and the strategies presented here can be applied to mitigating infections in different health care settings.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Infecção Hospitalar , Humanos , Infecção Hospitalar/prevenção & controle , Pessoal de Saúde , Atenção à Saúde , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/prevenção & controle
6.
Elife ; 122023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719070

RESUMO

Nutrient availability fluctuates in most natural populations, forcing organisms to undergo periods of fasting and re-feeding. It is unknown how dietary changes influence liver homeostasis. Here, we show that a switch from ad libitum feeding to intermittent fasting (IF) promotes rapid hepatocyte proliferation. Mechanistically, IF-induced hepatocyte proliferation is driven by the combined action of systemic FGF15 and localized WNT signaling. Hepatocyte proliferation during periods of fasting and re-feeding re-establishes a constant liver-to-body mass ratio, thus maintaining the hepatostat. This study provides the first example of dietary influence on adult hepatocyte proliferation and challenges the widely held view that liver tissue is mostly quiescent unless chemically or mechanically injured.


Assuntos
Jejum Intermitente , Regeneração Hepática , Camundongos , Animais , Fígado , Jejum , Hepatócitos , Proliferação de Células
7.
Methods Mol Biol ; 2544: 171-181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36125718

RESUMO

Polyploidy is a common and dynamic feature of mature rodent and human hepatocytes. While polyploidization occurs naturally during growth, alterations in the distribution of diploid and polyploid cells in the liver can be indicative of tissue stress or a pathologic state. Here, we describe a method for flow cytometric quantification of ploidy distribution by staining with propidium iodide. We first outline a hepatocyte isolation procedure from mouse liver through a two-step perfusion system for analysis of cellular ploidy. In an alternative approach, we employ a nuclei isolation protocol to assess nuclear ploidy. Finally, we describe how the use of fluorescent cell markers is compatible with these methods and helps retain information on cellular position within the tissue.


Assuntos
Hepatócitos , Ploidias , Animais , Citometria de Fluxo/métodos , Humanos , Fígado , Camundongos , Poliploidia , Propídio
8.
J Bone Miner Res ; 30(4): 733-41, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25413979

RESUMO

Bone morphogenetic proteins (BMPs) are crucial regulators of chondrogenesis. BMPs transduce their signals through three type I receptors: BMPR1A, BMPR1B, and ACVR1/ALK2. Fibrodysplasia ossificans progressiva (FOP), a rare disorder characterized by progressive ossification of connective tissue, is caused by an activating mutation in Acvr1 (the gene that encodes ACVR1/ALK2). However, there are few developmental defects associated with FOP. Thus, the role of ACVR1 in chondrogenesis during development is unknown. Here we report the phenotype of mice lacking ACVR1 in cartilage. Acvr1(CKO) mice are viable but exhibit defects in the development of cranial and axial structures. Mutants exhibit a shortened cranial base, and cervical vertebrae are hypoplastic. Acvr1(CKO) adult mice develop progressive kyphosis. These morphological defects were associated with decreased levels of Smad1/5 and p38 activation, and with reduced rates of chondrocyte proliferation in vertebral cartilage. We also tested whether ACVR1 exerts coordinated functions with BMPR1A and BMPR1B through analysis of double mutants. Acvr1/Bmpr1a and Acvr1/Bmpr1b mutant mice exhibited generalized perinatal lethal chondrodysplasia that was much more severe than in any of the corresponding mutant strains. These findings demonstrate that ACVR1 is required for chondrocyte proliferation and differentiation, particularly in craniofacial and axial elements, but exerts coordinated functions with both BMPR1A and BMPR1B throughout the developing endochondral skeleton.


Assuntos
Receptores de Ativinas Tipo I/fisiologia , Condrogênese/fisiologia , Crescimento , Receptores de Ativinas Tipo I/metabolismo , Animais , Camundongos , Fenótipo
9.
Front Plant Sci ; 6: 784, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442090

RESUMO

In previous work, we showed that coinoculating Rhizobium leguminosarum bv. viciae 128C53 and Bacillus simplex 30N-5 onto Pisum sativum L. roots resulted in better nodulation and increased plant growth. We now expand this research to include another alpha-rhizobial species as well as a beta-rhizobium, Burkholderia tuberum STM678. We first determined whether the rhizobia were compatible with B. simplex 30N-5 by cross-streaking experiments, and then Medicago truncatula and Melilotus alba were coinoculated with B. simplex 30N-5 and Sinorhizobium (Ensifer) meliloti to determine the effects on plant growth. Similarly, B. simplex 30N-5 and Bu. tuberum STM678 were coinoculated onto Macroptilium atropurpureum. The exact mechanisms whereby coinoculation results in increased plant growth are incompletely understood, but the synthesis of phytohormones and siderophores, the improved solubilization of inorganic nutrients, and the production of antimicrobial compounds are likely possibilities. Because B. simplex 30N-5 is not widely recognized as a Plant Growth Promoting Bacterial (PGPB) species, after sequencing its genome, we searched for genes proposed to promote plant growth, and then compared these sequences with those from several well studied PGPB species. In addition to genes involved in phytohormone synthesis, we detected genes important for the production of volatiles, polyamines, and antimicrobial peptides as well as genes for such plant growth-promoting traits as phosphate solubilization and siderophore production. Experimental evidence is presented to show that some of these traits, such as polyamine synthesis, are functional in B. simplex 30N-5, whereas others, e.g., auxin production, are not.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA