Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 790: 147824, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380262

RESUMO

In this paper, we investigate the potential gains in cost-effectiveness from changing the spatial scale at which nutrient reduction targets are set for the Baltic Sea, with particular focus on nutrient loadings from agriculture. The costs of achieving loading reductions are compared across five levels of spatial scale, namely the entire Baltic Sea; the marine basin level; the country level; the watershed level; and the grid square level. A novel highly-disaggregated model, which represents decreases in agricultural profits, changes in root zone N concentrations and transport to the Baltic Sea is used. The model includes 14 Baltic Sea marine basins, 14 countries, 117 watersheds and 19,023 10-by-10 km grid squares. The main result which emerges is that there is a large variation in the total cost of the program depending on the spatial scale of targeting: for example, for a 40% reduction in loads, the costs of a Baltic Sea-wide target is nearly three times lower than targets set at the smallest level of spatial scale (grid square). These results have important implications for both domestic and international policy design for achieving water quality improvements where non-point pollution is a key stressor of water quality.


Assuntos
Eutrofização , Poluição da Água , Agricultura , Países Bálticos , Análise Custo-Benefício , Nitrogênio/análise , Nutrientes , Fósforo/análise
2.
J Environ Qual ; 38(5): 1930-41, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19704137

RESUMO

Climate change may have profound effects on phosphorus (P) transport in streams and on lake eutrophication. Phosphorus loading from land to streams is expected to increase in northern temperate coastal regions due to higher winter rainfall and to a decline in warm temperate and arid climates. Model results suggest a 3.3 to 16.5% increase within the next 100 yr in the P loading of Danish streams depending on soil type and region. In lakes, higher eutrophication can be expected, reinforced by temperature-mediated higher P release from the sediment. Furthermore, a shift in fish community structure toward small and abundant plankti-benthivorous fish enhances predator control of zooplankton, resulting in higher phytoplankton biomass. Data from Danish lakes indicate increased chlorophyll a and phytoplankton biomass, higher dominance of dinophytes and cyanobacteria (most notably of nitrogen fixing forms), but lower abundance of diatoms and chrysophytes, reduced size of copepods and cladocerans, and a tendency to reduced zooplankton biomass and zooplankton:phytoplankton biomass ratio when lakes warm. Higher P concentrations are also seen in warm arid lakes despite reduced external loading due to increased evapotranspiration and reduced inflow. Therefore, the critical loading for good ecological state in lakes has to be lowered in a future warmer climate. This calls for adaptation measures, which in the northern temperate zone should include improved P cycling in agriculture, reduced loading from point sources, and (re)-establishment of wetlands and riparian buffer zones. In the arid Southern Europe, restrictions on human use of water are also needed, not least on irrigation.


Assuntos
Efeito Estufa , Fósforo/análise , Poluentes Químicos da Água/análise , Adaptação Fisiológica , Animais , Dinamarca , Ecossistema , Água Doce/química , Modelos Teóricos , Abastecimento de Água
3.
J Comput Graph Stat ; 28(2): 401-414, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31543693

RESUMO

We consider alternate formulations of recently proposed hierarchical Nearest Neighbor Gaussian Process (NNGP) models (Datta et al., 2016a) for improved convergence, faster computing time, and more robust and reproducible Bayesian inference. Algorithms are defined that improve CPU memory management and exploit existing high-performance numerical linear algebra libraries. Computational and inferential benefits are assessed for alternate NNGP specifications using simulated datasets and remotely sensed light detection and ranging (LiDAR) data collected over the US Forest Service Tanana Inventory Unit (TIU) in a remote portion of Interior Alaska. The resulting data product is the first statistically robust map of forest canopy for the TIU.

4.
Ambio ; 48(11): 1377-1388, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31605370

RESUMO

This paper analyzes the main weaknesses and key avenues for improvement of nutrient policies in the Baltic Sea region. HELCOM's Baltic Sea Action Plan (BSAP), accepted by the Baltic Sea countries in 2007, was based on an innovative ecological modeling of the Baltic Sea environment and addressed the impact of the combination of riverine loading and transfer of nutrients on the ecological status of the sea and its sub-basins. We argue, however, that the assigned country-specific targets of nutrient loading do not reach the same level of sophistication, because they are not based on careful economic and policy analysis. We show an increasing gap between the state-of-the-art policy alternatives and the existing command-and-control-based approaches to the protection of the Baltic Sea environment and outline the most important steps for a Baltic Sea Socioeconomic Action Plan. It is time to raise the socioeconomic design of nutrient policies to the same level of sophistication as the ecological foundations of the BSAP.


Assuntos
Eutrofização , Países Bálticos , Oceanos e Mares , Fatores Socioeconômicos
5.
Sci Total Environ ; 657: 627-633, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30677929

RESUMO

To analyse the potential future ecological state of estuaries located in the temperate climate (here exemplified with the Odense Fjord estuary, Denmark), we combined end-of-the-century climate change projections from four different climate models, four contrasting land use scenarios ("Agriculture for nature", "Extensive agriculture", "High-tech agriculture" and "Market driven agriculture") and two different eco-hydrological models. By decomposing the variance of the model-simulated output from all scenario and model combinations, we identified the key sources of uncertainties of these future projections. There was generally a decline in the ecological state of the estuary in scenarios with a warmer climate. Strikingly, even the most nature-friendly land use scenario, where a proportion of the intensive agricultural area was converted to forest, may not be enough to counteract the negative effects of a future warmer climate on the ecological state of the estuary. The different land use scenarios were the most significant sources of uncertainty in the projections of future ecological state, followed, in order, by eco-hydrological models and climate models, albeit all three sources caused high variability in the simulated outputs. Therefore, when projecting the future state of aquatic ecosystems in a global warming context, one should at the very least consider to evaluate an ensemble of land use scenarios (nutrient loads) but ideally also include multiple eco-hydrological models and climate change projections. Our study may set precedence for future attempts to predict and quantify uncertainties of model and model input ensembles, as this will likely be key elements in future tools for decision-making processes.

6.
Sci Total Environ ; 621: 253-264, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29186700

RESUMO

Water pollution and water scarcity are among the main environmental challenges faced by the European Union, and multiple stressors compromise the integrity of water resources and ecosystems. Particularly in lowland areas of northern Europe, high population density, flood protection and, especially, intensive agriculture, are important drivers of water quality degradation. In addition, future climate and land use changes may interact, with uncertain consequences for water resources. Modelling approaches have become essential to address water issues and to evaluate ecosystem management. In this work, three multi-stressor future storylines combining climatic and socio-economic changes, defined at European level, have been downscaled for the Odense Fjord catchment (Denmark), giving three scenarios: High-Tech agriculture (HT), Agriculture for Nature (AN) and Market-Driven agriculture (MD). The impacts of these scenarios on water discharge and inorganic and organic nutrient loads to the streams have been simulated using the Soil and Water Assessment Tool (SWAT). The results revealed that the scenario-specific climate inputs were most important when simulating hydrology, increasing river discharge in the HT and MD scenarios (which followed the high emission 8.5 representative concentration pathway, RCP), while remaining stable in the AN scenario (RCP 4.5). Moreover, discharge was the main driver of changes in organic nutrients and inorganic phosphorus loads that consequently increased in a high emission scenario. Nevertheless, both land use (via inputs of fertilizer) and climate changes affected the nitrate transport. Different levels of fertilization yielded a decrease in the nitrate load in AN and an increase in MD. In HT, however, nitrate losses remained stable because the fertilization decrease was counteracted by a flow increase. Thus, our results suggest that N loads will ultimately depend on future land use and management in an interaction with climate changes, and this knowledge is of utmost importance for the achievement of European environmental policy goals.

7.
Sci Total Environ ; 627: 880-895, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29426213

RESUMO

Groundwater and surface water are often closely coupled and are both under the influence of multiple stressors. Stressed groundwater systems may lead to a poor ecological status of surface waters but to date no conceptual framework to analyse linked multi-stressed groundwater - surface water systems has been developed. In this paper, a framework is proposed showing the effect of groundwater on surface waters in multiple stressed systems. This framework will be illustrated by applying it to four European catchments, the Odense, Denmark, the Regge and Dinkel, Netherlands, and the Thames, UK, and by assessing its utility in analysing the propagation or buffering of multi-stressors through groundwater to surface waters in these catchments. It is shown that groundwater affects surface water flow, nutrients and temperature, and can both propagate stressors towards surface waters and buffer the effect of stressors in space and time. The effect of groundwater on drivers and states depends on catchment characteristics, stressor combinations, scale and management practises. The proposed framework shows how groundwater in lowland catchments acts as a bridge between stressors and their effects within surface waters. It shows water managers how their management areas might be influenced by groundwater, and helps them to include this important, but often overlooked part of the water cycle in their basin management plans. The analysis of the study catchments also revealed a lack of data on the temperature of both groundwater and surface water, while it is an important parameter considering future climate warming.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA