Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
Nature ; 591(7850): 464-470, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536615

RESUMO

Most ovarian cancers are infiltrated by prognostically relevant activated T cells1-3, yet exhibit low response rates to immune checkpoint inhibitors4. Memory B cell and plasma cell infiltrates have previously been associated with better outcomes in ovarian cancer5,6, but the nature and functional relevance of these responses are controversial. Here, using 3 independent cohorts that in total comprise 534 patients with high-grade serous ovarian cancer, we show that robust, protective humoral responses are dominated by the production of polyclonal IgA, which binds to polymeric IgA receptors that are universally expressed on ovarian cancer cells. Notably, tumour B-cell-derived IgA redirects myeloid cells against extracellular oncogenic drivers, which causes tumour cell death. In addition, IgA transcytosis through malignant epithelial cells elicits transcriptional changes that antagonize the RAS pathway and sensitize tumour cells to cytolytic killing by T cells, which also contributes to hindering malignant progression. Thus, tumour-antigen-specific and -antigen-independent IgA responses antagonize the growth of ovarian cancer by governing coordinated tumour cell, T cell and B cell responses. These findings provide a platform for identifying targets that are spontaneously recognized by intratumoural B-cell-derived antibodies, and suggest that immunotherapies that augment B cell responses may be more effective than approaches that focus on T cells, particularly for malignancies that are resistant to checkpoint inhibitors.


Assuntos
Antígenos de Neoplasias/imunologia , Imunoglobulina A/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Linfócitos T Citotóxicos/imunologia , Transcitose , Especificidade de Anticorpos , Antígenos CD/imunologia , Linhagem Celular , Progressão da Doença , Feminino , Humanos , Neoplasias Ovarianas/prevenção & controle , Receptores Fc/imunologia , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Transcitose/imunologia , Microambiente Tumoral/imunologia
2.
EMBO Rep ; 24(8): e56430, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37272231

RESUMO

Human Tim8a and Tim8b are paralogous intermembrane space proteins of the small TIM chaperone family. Yeast small TIMs function in the trafficking of proteins to the outer and inner mitochondrial membranes. This putative import function for hTim8a and hTim8b has been challenged in human models, but their precise molecular function(s) remains undefined. Likewise, the necessity for human cells to encode two Tim8 proteins and whether any potential redundancy exists is unclear. We demonstrate that hTim8a and hTim8b function in the assembly of cytochrome c oxidase (Complex IV). Using affinity enrichment mass spectrometry, we define the interaction network of hTim8a, hTim8b and hTim13, identifying subunits and assembly factors of the Complex IV COX2 module. hTim8-deficient cells have a COX2 and COX3 module defect and exhibit an accumulation of the Complex IV S2 subcomplex. These data suggest that hTim8a and hTim8b function in assembly of Complex IV via interactions with intermediate-assembly subcomplexes. We propose that hTim8-hTim13 complexes are auxiliary assembly factors involved in the formation of the Complex IV S3 subcomplex during assembly of mature Complex IV.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Ciclo-Oxigenase 2/análise , Ciclo-Oxigenase 2/metabolismo , Membranas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriais/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(35): e2006487119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35998218

RESUMO

Recent studies have revealed that normal human tissues accumulate many somatic mutations. In particular, human skin is riddled with mutations, with multiple subclones of variable sizes. Driver mutations are frequent and tend to have larger subclone sizes, suggesting selection. To begin to understand the histories encoded by these complex somatic mutations, we incorporated genomes into a simple agent-based skin-cell model whose prime directive is homeostasis. In this model, stem-cell survival is random and dependent on proximity to the basement membrane. This simple homeostatic skin model recapitulates the observed log-linear distributions of somatic mutations, where most mutations are found in increasingly smaller subclones that are typically lost with time. Hence, neutral mutations are "passengers" whose fates depend on the random survival of their stem cells, where a rarer larger subclone reflects the survival and spread of mutations acquired earlier in life. The model can also maintain homeostasis and accumulate more frequent and larger driver subclones if these mutations (NOTCH1 and TP53) confer relatively higher persistence in normal skin or during tissue damage (sunlight). Therefore, a relatively simple model of epithelial turnover indicates how observed passenger and driver somatic mutations could accumulate without violating the prime directive of homeostasis in normal human tissues.


Assuntos
Evolução Clonal , Epiderme , Homeostase , Queratinócitos , Carcinogênese/genética , Evolução Clonal/genética , Epiderme/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/fisiologia , Mutação , Receptor Notch1/genética , Proteína Supressora de Tumor p53/genética
4.
Bull Math Biol ; 86(5): 47, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546759

RESUMO

Drug dose response curves are ubiquitous in cancer biology, but these curves are often used to measure differential response in first-order effects: the effectiveness of increasing the cumulative dose delivered. In contrast, second-order effects (the variance of drug dose) are often ignored. Knowledge of second-order effects may improve the design of chemotherapy scheduling protocols, leading to improvements in tumor response without changing the total dose delivered. By considering treatment schedules with identical cumulative dose delivered, we characterize differential treatment outcomes resulting from high variance schedules (e.g. high dose, low dose) and low variance schedules (constant dose). We extend a previous framework used to quantify second-order effects, known as antifragility theory, to investigate the role of drug pharmacokinetics. Using a simple one-compartment model, we find that high variance schedules are effective for a wide range of cumulative dose values. Next, using a mouse-parameterized two-compartment model of 5-fluorouracil, we show that schedule viability depends on initial tumor volume. Finally, we illustrate the trade-off between tumor response and lean mass preservation. Mathematical modeling indicates that high variance dose schedules provide a potential path forward in mitigating the risk of chemotherapy-associated cachexia by preserving lean mass without sacrificing tumor response.


Assuntos
Caquexia , Conceitos Matemáticos , Animais , Caquexia/tratamento farmacológico , Caquexia/etiologia , Protocolos de Quimioterapia Combinada Antineoplásica , Biologia , Modelos Animais de Doenças
5.
Clin Exp Dermatol ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38549548

RESUMO

The aim of this study was to investigate the appropriateness of suspected skin cancer referrals made by non-medical practitioners (NMPs) and compare this to referrals made by local General Practitioners (GPs). Data were collected prospectively from patients referred to a UK hospital dermatology department from primary care. The profession of the referrer was ascertained from review of referral letters and direct questioning. Patient records and subsequent histology reports were reviewed to determine ultimate diagnosis. 668/753 patients (88.7%) were referred by GPs versus 85/753 (11.3%) by NMPs. 340/668 (50.1%) of patients in the GP group and 47/85 (55.3%) in the NMP group were discharged without intervention (p = 0.45). An ultimate diagnosis of skin malignancy was made in 196/668 (29.3%) patients in the GP and 25/85 (29.4%)) in the NMP group (p = 0.99). These early data suggest significant potential for NMPs to become more involved in skin lesion assessment.

6.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34480000

RESUMO

The O-acetylation of exopolysaccharides, including the essential bacterial cell wall polymer peptidoglycan, confers resistance to their lysis by exogenous hydrolases. Like the enzymes catalyzing the O-acetylation of exopolysaccharides in the Golgi of animals and fungi, peptidoglycan O-acetyltransferase A (OatA) is predicted to be an integral membrane protein comprised of a membrane-spanning acyltransferase-3 (AT-3) domain and an extracytoplasmic domain; for OatA, these domains are located in the N- and C-terminal regions of the enzyme, respectively. The recombinant C-terminal domain (OatAC) has been characterized as an SGNH acetyltransferase, but nothing was known about the function of the N-terminal AT-3 domain (OatAN) or its homologs associated with other acyltransferases. We report herein the experimental determination of the topology of Staphylococcus aureus OatAN, which differs markedly from that predicted in silico. We present the biochemical characterization of OatAN as part of recombinant OatA and demonstrate that acetyl-CoA serves as the substrate for OatAN Using in situ and in vitro assays, we characterized 35 engineered OatA variants which identified a catalytic triad of Tyr-His-Glu residues. We trapped an acetyl group from acetyl-CoA on the catalytic Tyr residue that is located on an extracytoplasmic loop of OatAN Further enzymatic characterization revealed that O-acetyl-Tyr represents the substrate for OatAC We propose a model for OatA action involving the translocation of acetyl groups from acetyl-CoA across the cytoplasmic membrane by OatAN and their subsequent intramolecular transfer to OatAC for the O-acetylation of peptidoglycan via the concerted action of catalytic Tyr and Ser residues.


Assuntos
Acetiltransferases/metabolismo , Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Peptidoglicano/metabolismo , Staphylococcus aureus/enzimologia , Acetilcoenzima A/metabolismo , Acetilação , Acetiltransferases/química , Aciltransferases/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Domínio Catalítico , Parede Celular/enzimologia , Muramidase/metabolismo , Especificidade por Substrato
7.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33452133

RESUMO

The harsh microenvironment of ductal carcinoma in situ (DCIS) exerts strong evolutionary selection pressures on cancer cells. We hypothesize that the poor metabolic conditions near the ductal center foment the emergence of a Warburg Effect (WE) phenotype, wherein cells rapidly ferment glucose to lactic acid, even in normoxia. To test this hypothesis, we subjected low-glycolytic breast cancer cells to different microenvironmental selection pressures using combinations of hypoxia, acidosis, low glucose, and starvation for many months and isolated single clones for metabolic and transcriptomic profiling. The two harshest conditions selected for constitutively expressed WE phenotypes. RNA sequencing analysis of WE clones identified the transcription factor KLF4 as potential inducer of the WE phenotype. In stained DCIS samples, KLF4 expression was enriched in the area with the harshest microenvironmental conditions. We simulated in vivo DCIS phenotypic evolution using a mathematical model calibrated from the in vitro results. The WE phenotype emerged in the poor metabolic conditions near the necrotic core. We propose that harsh microenvironments within DCIS select for a WE phenotype through constitutive transcriptional reprogramming, thus conferring a survival advantage and facilitating further growth and invasion.


Assuntos
Neoplasias da Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Fatores de Transcrição Kruppel-Like/genética , Efeito Warburg em Oncologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Glicólise/genética , Humanos , Fator 4 Semelhante a Kruppel , Células MCF-7 , Estadiamento de Neoplasias , Hipóxia Tumoral/genética , Microambiente Tumoral/genética
8.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34470866

RESUMO

Emergence of novel variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for next-generation vaccines able to elicit broad and durable immunity. Here we report the evaluation of a ferritin nanoparticle vaccine displaying the receptor-binding domain of the SARS-CoV-2 spike protein (RFN) adjuvanted with Army Liposomal Formulation QS-21 (ALFQ). RFN vaccination of macaques using a two-dose regimen resulted in robust, predominantly Th1 CD4+ T cell responses and reciprocal peak mean serum neutralizing antibody titers of 14,000 to 21,000. Rapid control of viral replication was achieved in the upper and lower airways of animals after high-dose SARS-CoV-2 respiratory challenge, with undetectable replication within 4 d in seven of eight animals receiving 50 µg of RFN. Cross-neutralization activity against SARS-CoV-2 variant B.1.351 decreased only approximately twofold relative to WA1/2020. In addition, neutralizing, effector antibody and cellular responses targeted the heterotypic SARS-CoV-1, highlighting the broad immunogenicity of RFN-ALFQ for SARS-CoV-like Sarbecovirus vaccine development.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/virologia , Macaca mulatta/imunologia , Nanopartículas/química , Receptores Virais/metabolismo , SARS-CoV-2/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Ferritinas/química , SARS-CoV-2/metabolismo , Linfócitos T/imunologia
9.
Mol Biol Evol ; 39(4)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35298641

RESUMO

Research over the past two decades has made substantial inroads into our understanding of somatic mutations. Recently, these studies have focused on understanding their presence in homeostatic tissue. In parallel, agent-based mechanistic models have emerged as an important tool for understanding somatic mutation in tissue; yet no common methodology currently exists to provide base-pair resolution data for these models. Here, we present Gattaca as the first method for introducing and tracking somatic mutations at the base-pair resolution within agent-based models that typically lack nuclei. With nuclei that incorporate human reference genomes, mutational context, and sequence coverage/error information, Gattaca is able to realistically evolve sequence data, facilitating comparisons between in silico cell tissue modeling with experimental human somatic mutation data. This user-friendly method, incorporated into each in silico cell, allows us to fully capture somatic mutation spectra and evolution.


Assuntos
Genoma Humano , Neoplasias , Evolução Clonal , Humanos , Mutação , Neoplasias/genética
10.
J Cell Sci ; 134(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34313317

RESUMO

The mitochondrial inner membrane is a protein-rich environment containing large multimeric complexes, including complexes of the mitochondrial electron transport chain, mitochondrial translocases and quality control machineries. Although the inner membrane is highly proteinaceous, with 40-60% of all mitochondrial proteins localised to this compartment, little is known about the spatial distribution and organisation of complexes in this environment. We set out to survey the arrangement of inner membrane complexes using stochastic optical reconstruction microscopy (STORM). We reveal that subunits of the TIM23 complex, TIM23 and TIM44 (also known as TIMM23 and TIMM44, respectively), and the complex IV subunit COXIV, form organised clusters and show properties distinct from the outer membrane protein TOM20 (also known as TOMM20). Density based cluster analysis indicated a bimodal distribution of TIM44 that is distinct from TIM23, suggesting distinct TIM23 subcomplexes. COXIV is arranged in larger clusters that are disrupted upon disruption of complex IV assembly. Thus, STORM super-resolution microscopy is a powerful tool for examining the nanoscale distribution of mitochondrial inner membrane complexes, providing a 'visual' approach for obtaining pivotal information on how mitochondrial complexes exist in a cellular context.


Assuntos
Mitocôndrias , Proteínas de Transporte da Membrana Mitocondrial , Animais , Células HEK293 , Células HeLa , Humanos , Microscopia , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Transporte Proteico
11.
J Biol Chem ; 296: 100249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33384382

RESUMO

The serine-rich repeat (SRR) glycoproteins of gram-positive bacteria are a family of adhesins that bind to a wide range of host ligands, and expression of SRR glycoproteins is linked with enhanced bacterial virulence. The biogenesis of these surface glycoproteins involves their intracellular glycosylation and export via the accessory Sec system. Although all accessory Sec components are required for SRR glycoprotein export, Asp2 of Streptococcus gordonii also functions as an O-acetyltransferase that modifies GlcNAc residues on the SRR adhesin gordonii surface protein B (GspB). Because these GlcNAc residues can also be modified by the glycosyltransferases Nss and Gly, it has been unclear whether the post-translational modification of GspB is coordinated. We now report that acetylation modulates the glycosylation of exported GspB. Loss of O-acetylation due to aps2 mutagenesis led to the export of GspB glycoforms with increased glucosylation of the GlcNAc moieties. Linkage analysis of the GspB glycan revealed that both O-acetylation and glucosylation occurred at the same C6 position on GlcNAc residues and that O-acetylation prevented Glc deposition. Whereas streptococci expressing nonacetylated GspB with increased glucosylation were significantly reduced in their ability to bind human platelets in vitro, deletion of the glycosyltransferases nss and gly in the asp2 mutant restored platelet binding to WT levels. These findings demonstrate that GlcNAc O-acetylation controls GspB glycosylation, such that binding via this adhesin is optimized. Moreover, because O-acetylation has comparable effects on the glycosylation of other SRR adhesins, acetylation may represent a conserved regulatory mechanism for the post-translational modification of the SRR glycoprotein family.


Assuntos
Glicoproteínas/genética , Glicosiltransferases/genética , Transporte Proteico/genética , Streptococcus gordonii/genética , Acetilação , Sequência de Aminoácidos/genética , Glicoproteínas/química , Glicosilação , Glicosiltransferases/química , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Ligação Proteica/genética , Processamento de Proteína Pós-Traducional/genética , Serina/química , Serina/genética , Streptococcus gordonii/química
12.
Glycobiology ; 32(10): 826-848, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35871440

RESUMO

The substitution and de-substitution of carbohydrate materials are important steps in the biosynthesis and/or breakdown of a wide variety of biologically important polymers. The SGNH hydrolase superfamily is a group of related and well-studied proteins with a highly conserved catalytic fold and mechanism composed of 16 member families. SGNH hydrolases can be found in vertebrates, plants, fungi, bacteria, and archaea, and play a variety of important biological roles related to biomass conversion, pathogenesis, and cell signaling. The SGNH hydrolase superfamily is chiefly composed of a diverse range of carbohydrate-modifying enzymes, including but not limited to the carbohydrate esterase families 2, 3, 6, 12 and 17 under the carbohydrate-active enzyme classification system and database (CAZy.org). In this review, we summarize the structural and functional features that delineate these subfamilies of SGNH hydrolases, and which generate the wide variety of substrate preferences and enzymatic activities observed of these proteins to date.


Assuntos
Carboidratos , Hidrolases , Biopolímeros/biossíntese , Biopolímeros/química , Carboidratos/biossíntese , Carboidratos/química , Esterases/química , Esterases/classificação , Esterases/metabolismo , Hidrolases/química , Hidrolases/classificação , Hidrolases/metabolismo , Conformação Proteica
13.
Small ; 18(6): e2105678, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34851029

RESUMO

Porous carbon plays a significant role in all-solid-state lithium-sulfur batteries (ASSLSBs) to enhance the electronic conductivity of sulfur. However, the conventional porous carbon used in cell with liquid electrolyte exhibits low efficiency in ASSLSBs because the immobile solid electrolyte (SE) cannot reach sulfur confined in the deep pores. The structure and distribution of pores in carbon highly impact the electrochemical performance of ASSLSBs. Herein, a N-doped carbon fiber with micropores located only at the surface with an ultrahigh surface area of 1519 m2  g-1 is designed. As the porous layer is only on the surface, the sulfur hosted in the pores can effectively contact SE; meanwhile the dense core provides excellent electrical conductivity. Therefore, this structurally designed carbon fiber enhances both electron and ion accessibilities, promotes charge transfer, and thus dramatically improves the reaction kinetic in the ASSLSBs and boosts sulfur utilization. Compared to the vapor grown carbon fibers, the ASSLSBs using PAN-derived porous carbon fibers exhibit three times enhancement in the initial capacity of 1166 mAh g-1 at C/20. An exceedingly cycling stability of 710 mAh g-1 is maintained after 220 cycles at C/10, and satisfactory rate capability of 889 mAh g-1 at C/2 is achieved.

14.
Bioinformatics ; 36(22-23): 5542-5544, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325501

RESUMO

SUMMARY: Evolutionary game theory describes frequency-dependent selection for fixed, heritable strategies in a population of competing individuals using a payoff matrix. We present a software package to aid in the construction, analysis and visualization of three-strategy matrix games. The IsoMaTrix package computes the isoclines (lines of zero growth) of matrix games, and facilitates direct comparison of well-mixed dynamics to structured populations on a lattice grid. IsoMaTrix computes fixed points, phase flow, trajectories, (sub)velocities and uncertainty quantification for stochastic effects in spatial matrix games. We describe a result obtained via IsoMaTrix's spatial games functionality, which shows that the timing of competitive release in a cancer model (under continuous treatment) critically depends on the initial spatial configuration of the tumor. AVAILABILITY AND IMPLEMENTATION: The code is available at: https://github.com/mathonco/isomatrix. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

15.
Phys Biol ; 19(3)2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35078159

RESUMO

The role of plasticity and epigenetics in shaping cancer evolution and response to therapy has taken center stage with recent technological advances including single cell sequencing. This roadmap article is focused on state-of-the-art mathematical and experimental approaches to interrogate plasticity in cancer, and addresses the following themes and questions: is there a formal overarching framework that encompasses both non-genetic plasticity and mutation-driven somatic evolution? How do we measure and model the role of the microenvironment in influencing/controlling non-genetic plasticity? How can we experimentally study non-genetic plasticity? Which mathematical techniques are required or best suited? What are the clinical and practical applications and implications of these concepts?


Assuntos
Epigênese Genética , Neoplasias , Epigenômica , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Microambiente Tumoral
16.
Opt Express ; 30(12): 21195-21210, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224844

RESUMO

We present a dual-comb interferometer capable of measuring both the range to a target as well as the target's transverse rotation rate. Measurement of the transverse rotation of the target is achieved by preparing the probe comb with orbital angular momentum and measuring the resultant phase shift between interferograms, which arises from the rotational Doppler shift. The distance to the target is measured simultaneously by measuring the time-of-flight delay between the target and reference interferogram centerbursts. With 40 ms of averaging, we measure rotation rates up to 313 Hz with a precision reaching 1 Hz. Distances are measured with an ambiguity range of 75 cm and with a precision of 5.9 µm for rotating targets and 400 nm for a static target. This is the first dual-comb ranging system capable of measuring transverse rotation of a target. This technique has many potential terrestrial and space-based applications for lidar and remote sensing systems.

17.
PLoS Comput Biol ; 17(8): e1009348, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34460809

RESUMO

Intra-tumour heterogeneity is a leading cause of treatment failure and disease progression in cancer. While genetic mutations have long been accepted as a primary mechanism of generating this heterogeneity, the role of phenotypic plasticity is becoming increasingly apparent as a driver of intra-tumour heterogeneity. Consequently, understanding the role of this plasticity in treatment resistance and failure is a key component of improving cancer therapy. We develop a mathematical model of stochastic phenotype switching that tracks the evolution of drug-sensitive and drug-tolerant subpopulations to clarify the role of phenotype switching on population growth rates and tumour persistence. By including cytotoxic therapy in the model, we show that, depending on the strategy of the drug-tolerant subpopulation, stochastic phenotype switching can lead to either transient or permanent drug resistance. We study the role of phenotypic heterogeneity in a drug-resistant, genetically homogeneous population of non-small cell lung cancer cells to derive a rational treatment schedule that drives population extinction and avoids competitive release of the drug-tolerant sub-population. This model-informed therapeutic schedule results in increased treatment efficacy when compared against periodic therapy, and, most importantly, sustained tumour decay without the development of resistance.


Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Humanos , Modelos Biológicos , Processos Estocásticos
18.
Biochemistry ; 60(47): 3659-3669, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34762795

RESUMO

Biofilms are communities of self-enmeshed bacteria in a matrix of exopolysaccharides. The widely distributed human pathogen and commensal Escherichia coli produces a biofilm matrix composed of phosphoethanolamine (pEtN)-modified cellulose and amyloid protein fibers, termed curli. The addition of pEtN to the cellulose exopolysaccharide is accomplished by the action of the pEtN transferase, BcsG, and is essential for the overall integrity of the biofilm. Here, using the synthetic co-substrates p-nitrophenyl phosphoethanolamine and ß-d-cellopentaose, we demonstrate using an in vitro pEtN transferase assay that full activity of the pEtN transferase domain of BcsG from E. coli (EcBcsGΔN) requires Zn2+ binding, a catalytic nucleophile/acid-base arrangement (Ser278/Cys243/His396), disulfide bond formation, and other newly uncovered essential residues. We further confirm that EcBcsGΔN catalysis proceeds by a ping-pong bisubstrate-biproduct reaction mechanism and displays inefficient kinetic behavior (kcat/KM = 1.81 × 10-4 ± 2.81 × 10-5 M-1 s-1), which is typical of exopolysaccharide-modifying enzymes in bacteria. Thus, the results presented, especially with respect to donor binding (as reflected by KM), have importantly broadened our understanding of the substrate profile and catalytic mechanism of this class of enzymes, which may aid in the development of inhibitors targeting BcsG or other characterized members of the pEtN transferase family, including the intrinsic and mobile colistin resistance factors.


Assuntos
Celulose/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Etanolaminas/metabolismo , Proteínas de Membrana/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Biofilmes , Celulose/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Etanolaminas/química , Proteínas de Membrana/química , Polissacarídeos Bacterianos/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/química
19.
J Biol Chem ; 295(18): 6225-6235, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32152228

RESUMO

Bacterial biofilms are cellular communities that produce an adherent matrix. Exopolysaccharides are key structural components of this matrix and are required for the assembly and architecture of biofilms produced by a wide variety of microorganisms. The human bacterial pathogens Escherichia coli and Salmonella enterica produce a biofilm matrix composed primarily of the exopolysaccharide phosphoethanolamine (pEtN) cellulose. Once thought to be composed of only underivatized cellulose, the pEtN modification present in these matrices has been implicated in the overall architecture and integrity of the biofilm. However, an understanding of the mechanism underlying pEtN derivatization of the cellulose exopolysaccharide remains elusive. The bacterial cellulose synthase subunit G (BcsG) is a predicted inner membrane-localized metalloenzyme that has been proposed to catalyze the transfer of the pEtN group from membrane phospholipids to cellulose. Here we present evidence that the C-terminal domain of BcsG from E. coli (EcBcsGΔN) functions as a phosphoethanolamine transferase in vitro with substrate preference for cellulosic materials. Structural characterization of EcBcsGΔN revealed that it belongs to the alkaline phosphatase superfamily, contains a Zn2+ ion at its active center, and is structurally similar to characterized enzymes that confer colistin resistance in Gram-negative bacteria. Informed by our structural studies, we present a functional complementation experiment in E. coli AR3110, indicating that the activity of the BcsG C-terminal domain is essential for integrity of the pellicular biofilm. Furthermore, our results established a similar but distinct active-site architecture and catalytic mechanism shared between BcsG and the colistin resistance enzymes.


Assuntos
Escherichia coli/enzimologia , Etanolaminofosfotransferase/metabolismo , Glucosiltransferases/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Dissulfetos/química , Etanolaminofosfotransferase/química , Glucosiltransferases/química , Modelos Moleculares , Conformação Proteica
20.
Opt Express ; 29(3): 4058-4066, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770993

RESUMO

The rotational Doppler shift (RDS) is typically measured by illuminating a rotating target with a laser prepared in a simple, known orbital angular momentum (OAM) superposition. We establish theoretically and experimentally that detecting the rotational Doppler shift does not require the incident light to have a well-defined OAM spectrum but instead requires well-defined correlations within the OAM spectrum. We demonstrate measurement of the rotational Doppler shift using spatially incoherent light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA