Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Cell ; 187(8): 2010-2028.e30, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38569542

RESUMO

Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations, charted their spatial organization, and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.


Assuntos
Colite Ulcerativa , Colite , Animais , Humanos , Camundongos , Colite/metabolismo , Colite/patologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Hibridização in Situ Fluorescente/métodos , Inflamação/metabolismo , Inflamação/patologia , Comunicação Celular , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia
2.
Cell ; 184(26): 6262-6280.e26, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34910928

RESUMO

Colorectal cancers (CRCs) arise from precursor polyps whose cellular origins, molecular heterogeneity, and immunogenic potential may reveal diagnostic and therapeutic insights when analyzed at high resolution. We present a single-cell transcriptomic and imaging atlas of the two most common human colorectal polyps, conventional adenomas and serrated polyps, and their resulting CRC counterparts. Integrative analysis of 128 datasets from 62 participants reveals adenomas arise from WNT-driven expansion of stem cells, while serrated polyps derive from differentiated cells through gastric metaplasia. Metaplasia-associated damage is coupled to a cytotoxic immune microenvironment preceding hypermutation, driven partly by antigen-presentation differences associated with tumor cell-differentiation status. Microsatellite unstable CRCs contain distinct non-metaplastic regions where tumor cells acquire stem cell properties and cytotoxic immune cells are depleted. Our multi-omic atlas provides insights into malignant progression of colorectal polyps and their microenvironment, serving as a framework for precision surveillance and prevention of CRC.


Assuntos
Pólipos do Colo/patologia , Neoplasias Colorretais/patologia , Microambiente Tumoral , Imunidade Adaptativa , Adenoma/genética , Adenoma/patologia , Adulto , Idoso , Animais , Carcinogênese/genética , Carcinogênese/patologia , Morte Celular , Diferenciação Celular , Pólipos do Colo/genética , Pólipos do Colo/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Heterogeneidade Genética , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , RNA-Seq , Reprodutibilidade dos Testes , Análise de Célula Única , Microambiente Tumoral/imunologia
3.
Nat Immunol ; 24(11): 1908-1920, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37828379

RESUMO

Co-inhibitory and checkpoint molecules suppress T cell function in the tumor microenvironment, thereby rendering T cells dysfunctional. Although immune checkpoint blockade is a successful treatment option for multiple human cancers, severe autoimmune-like adverse effects can limit its application. Here, we show that the gene encoding peptidoglycan recognition protein 1 (PGLYRP1) is highly coexpressed with genes encoding co-inhibitory molecules, indicating that it might be a promising target for cancer immunotherapy. Genetic deletion of Pglyrp1 in mice led to decreased tumor growth and an increased activation/effector phenotype in CD8+ T cells, suggesting an inhibitory function of PGLYRP1 in CD8+ T cells. Surprisingly, genetic deletion of Pglyrp1 protected against the development of experimental autoimmune encephalomyelitis, a model of autoimmune disease in the central nervous system. PGLYRP1-deficient myeloid cells had a defect in antigen presentation and T cell activation, indicating that PGLYRP1 might function as a proinflammatory molecule in myeloid cells during autoimmunity. These results highlight PGLYRP1 as a promising target for immunotherapy that, when targeted, elicits a potent antitumor immune response while protecting against some forms of tissue inflammation and autoimmunity.


Assuntos
Encefalomielite Autoimune Experimental , Neoplasias , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/genética , Imunoterapia , Inflamação , Doenças Neuroinflamatórias , Microambiente Tumoral
4.
Immunity ; 57(2): 206-222, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38354701

RESUMO

LAG-3, TIM-3, and TIGIT comprise the next generation of immune checkpoint receptors being harnessed in the clinic. Although initially studied for their roles in restraining T cell responses, intense investigation over the last several years has started to pinpoint the unique functions of these molecules in other immune cell types. Understanding the distinct processes that these receptors regulate across immune cells and tissues will inform the clinical development and application of therapies that either antagonize or agonize these receptors, as well as the profile of potential tissue toxicity associated with their targeting. Here, we discuss the distinct functions of LAG-3, TIM-3, and TIGIT, including their contributions to the regulation of immune cells beyond T cells, their roles in disease, and the implications for their targeting in the clinic.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Receptores Imunológicos , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Receptores Imunológicos/metabolismo , Linfócitos T
5.
Immunity ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906145

RESUMO

Tissues are exposed to diverse inflammatory challenges that shape future inflammatory responses. While cellular metabolism regulates immune function, how metabolism programs and stabilizes immune states within tissues and tunes susceptibility to inflammation is poorly understood. Here, we describe an innate immune metabolic switch that programs long-term intestinal tolerance. Intestinal interleukin-18 (IL-18) stimulation elicited tolerogenic macrophages by preventing their proinflammatory glycolytic polarization via metabolic reprogramming to fatty acid oxidation (FAO). FAO reprogramming was triggered by IL-18 activation of SLC12A3 (NCC), leading to sodium influx, release of mitochondrial DNA, and activation of stimulator of interferon genes (STING). FAO was maintained in macrophages by a bistable switch that encoded memory of IL-18 stimulation and by intercellular positive feedback that sustained the production of macrophage-derived 2'3'-cyclic GMP-AMP (cGAMP) and epithelial-derived IL-18. Thus, a tissue-reinforced metabolic switch encodes durable immune tolerance in the gut and may enable reconstructing compromised immune tolerance in chronic inflammation.

6.
Immunity ; 56(2): 256-271, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36792572

RESUMO

The immune system plays critical roles in both autoimmunity and cancer, diseases at opposite ends of the immune spectrum. Autoimmunity arises from loss of T cell tolerance against self, while in cancer, poor immunity against transformed self fails to control tumor growth. Blockade of pathways that preserve self-tolerance is being leveraged to unleash immunity against many tumors; however, widespread success is hindered by the autoimmune-like toxicities that arise in treated patients. Knowledge gained from the treatment of autoimmunity can be leveraged to treat these toxicities in patients. Further, the understanding of how T cell dysfunction arises in cancer can be leveraged to induce a similar state in autoreactive T cells. Here, we review what is known about the T cell response in autoimmunity and cancer and highlight ways in which we can learn from the nexus of these two diseases to improve the application, efficacy, and management of immunotherapies.


Assuntos
Doenças Autoimunes , Neoplasias , Humanos , Autoimunidade , Linfócitos T , Neoplasias/terapia , Tolerância Imunológica , Tolerância a Antígenos Próprios , Doenças Autoimunes/terapia
7.
Immunity ; 55(9): 1663-1679.e6, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36070768

RESUMO

Interleukin-23 receptor plays a critical role in inducing inflammation and autoimmunity. Here, we report that Th1-like cells differentiated in vitro with IL-12 + IL-21 showed similar IL-23R expression to that of pathogenic Th17 cells using eGFP reporter mice. Fate mapping established that these cells did not transition through a Th17 cell state prior to becoming Th1-like cells, and we observed their emergence in vivo in the T cell adoptive transfer colitis model. Using IL-23R-deficient Th1-like cells, we demonstrated that IL-23R was required for the development of a highly colitogenic phenotype. Single-cell RNA sequencing analysis of intestinal T cells identified IL-23R-dependent genes in Th1-like cells that differed from those expressed in Th17 cells. The perturbation of one of these regulators (CD160) in Th1-like cells inhibited the induction of colitis. We thus uncouple IL-23R as a purely Th17 cell-specific factor and implicate IL-23R signaling as a pathogenic driver in Th1-like cells inducing tissue inflammation.


Assuntos
Colite , Receptores de Interleucina , Animais , Inflamação/metabolismo , Interleucina-23/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Células Th1 , Células Th17
8.
Cell ; 166(6): 1500-1511.e9, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27610572

RESUMO

Reversing the dysfunctional T cell state that arises in cancer and chronic viral infections is the focus of therapeutic interventions; however, current therapies are effective in only some patients and some tumor types. To gain a deeper molecular understanding of the dysfunctional T cell state, we analyzed population and single-cell RNA profiles of CD8(+) tumor-infiltrating lymphocytes (TILs) and used genetic perturbations to identify a distinct gene module for T cell dysfunction that can be uncoupled from T cell activation. This distinct dysfunction module is downstream of intracellular metallothioneins that regulate zinc metabolism and can be identified at single-cell resolution. We further identify Gata-3, a zinc-finger transcription factor in the dysfunctional module, as a regulator of dysfunction, and we use CRISPR-Cas9 genome editing to show that it drives a dysfunctional phenotype in CD8(+) TILs. Our results open novel avenues for targeting dysfunctional T cell states while leaving activation programs intact.


Assuntos
Linfócitos T CD8-Positivos/patologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Animais , Linfócitos T CD8-Positivos/imunologia , Sistemas CRISPR-Cas , Carcinogênese/genética , Carcinogênese/imunologia , Feminino , Fator de Transcrição GATA3/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Melanoma/imunologia , Melanoma/fisiopatologia , Metalotioneína/deficiência , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
9.
Immunity ; 53(3): 658-671.e6, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937153

RESUMO

Identifying signals in the tumor microenvironment (TME) that shape CD8+ T cell phenotype can inform novel therapeutic approaches for cancer. Here, we identified a gradient of increasing glucocorticoid receptor (GR) expression and signaling from naïve to dysfunctional CD8+ tumor-infiltrating lymphocytes (TILs). Conditional deletion of the GR in CD8+ TILs improved effector differentiation, reduced expression of the transcription factor TCF-1, and inhibited the dysfunctional phenotype, culminating in tumor growth inhibition. GR signaling transactivated the expression of multiple checkpoint receptors and promoted the induction of dysfunction-associated genes upon T cell activation. In the TME, monocyte-macrophage lineage cells produced glucocorticoids and genetic ablation of steroidogenesis in these cells as well as localized pharmacologic inhibition of glucocorticoid biosynthesis improved tumor growth control. Active glucocorticoid signaling associated with failure to respond to checkpoint blockade in both preclinical models and melanoma patients. Thus, endogenous steroid hormone signaling in CD8+ TILs promotes dysfunction, with important implications for cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Glucocorticoides/metabolismo , Macrófagos/metabolismo , Melanoma Experimental/patologia , Microambiente Tumoral/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Linhagem Celular Tumoral , Hematopoese/imunologia , Fator 1-alfa Nuclear de Hepatócito/biossíntese , Inibidores de Checkpoint Imunológico , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/imunologia
10.
Immunity ; 51(4): 606-608, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618653

RESUMO

Although immune checkpoint blockade (ICB) has yielded striking clinical responses in subsets of cancer patients, the mechanism of action is still unclear. In a recent issue of Nature Medicine, Yost et al., 2019 report that the T cell clones that dominate the intra-tumoral T cell landscape after ICB are distinct from those prior to treatment, a phenomenon referred to by the authors as "clonal replacement."


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Células Clonais , Humanos , Linfócitos T
11.
Immunity ; 50(1): 181-194.e6, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635236

RESUMO

An improved understanding of the anti-tumor CD8+ T cell response after checkpoint blockade would enable more informed and effective therapeutic strategies. Here we examined the dynamics of the effector response of CD8+ tumor-infiltrating lymphocytes (TILs) after checkpoint blockade therapy. Bulk and single-cell RNA profiles of CD8+ TILs after combined Tim-3+PD-1 blockade in preclinical models revealed significant changes in the transcriptional profile of PD-1- TILs. These cells could be divided into subsets bearing characterstics of naive-, effector-, and memory-precursor-like cells. Effector- and memory-precursor-like TILs contained tumor-antigen-specific cells, exhibited proliferative and effector capacity, and expanded in response to different checkpoint blockade therapies across different tumor models. The memory-precursor-like subset shared features with CD8+ T cells associated with response to checkpoint blockade in patients and was compromised in the absence of Tcf7. Expression of Tcf7/Tcf1 was requisite for the efficacy of diverse immunotherapies, highlighting the importance of this transcriptional regulator in the development of effective CD8+ T cell responses upon immunotherapy.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Experimentais/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Subpopulações de Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Proliferação de Células , Receptor Celular 2 do Vírus da Hepatite A/antagonistas & inibidores , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Humanos , Memória Imunológica/genética , Imunoterapia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia , Transcriptoma
12.
Nat Immunol ; 21(9): 972-973, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32724188
14.
Nature ; 595(7865): 101-106, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34108686

RESUMO

T cell immunoglobulin and mucin-containing molecule 3 (TIM-3), first identified as a molecule expressed on interferon-γ producing T cells1, is emerging as an important immune-checkpoint molecule, with therapeutic blockade of TIM-3 being investigated in multiple human malignancies. Expression of TIM-3 on CD8+ T cells in the tumour microenvironment is considered a cardinal sign of T cell dysfunction; however, TIM-3 is also expressed on several other types of immune cell, confounding interpretation of results following blockade using anti-TIM-3 monoclonal antibodies. Here, using conditional knockouts of TIM-3 together with single-cell RNA sequencing, we demonstrate the singular importance of TIM-3 on dendritic cells (DCs), whereby loss of TIM-3 on DCs-but not on CD4+ or CD8+ T cells-promotes strong anti-tumour immunity. Loss of TIM-3 prevented DCs from expressing a regulatory program and facilitated the maintenance of CD8+ effector and stem-like T cells. Conditional deletion of TIM-3 in DCs led to increased accumulation of reactive oxygen species resulting in NLRP3 inflammasome activation. Inhibition of inflammasome activation, or downstream effector cytokines interleukin-1ß (IL-1ß) and IL-18, completely abrogated the protective anti-tumour immunity observed with TIM-3 deletion in DCs. Together, our findings reveal an important role for TIM-3 in regulating DC function and underscore the potential of TIM-3 blockade in promoting anti-tumour immunity by regulating inflammasome activation.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Inflamassomos/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Células Dendríticas , Feminino , Receptor Celular 2 do Vírus da Hepatite A/deficiência , Receptor Celular 2 do Vírus da Hepatite A/genética , Interleucina-18/imunologia , Interleucina-1beta/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neoplasias/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
15.
Immunity ; 44(5): 989-1004, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27192565

RESUMO

Co-inhibitory receptors, such as CTLA-4 and PD-1, have an important role in regulating T cell responses and have proven to be effective targets in the setting of chronic diseases where constitutive co-inhibitory receptor expression on T cells dampens effector T cell responses. Unfortunately, many patients still fail to respond to therapies that target CTLA-4 and PD-1. The next wave of co-inhibitory receptor targets that are being explored in clinical trials include Lag-3, Tim-3, and TIGIT. These receptors, although they belong to the same class of receptors as PD-1 and CTLA-4, exhibit unique functions, especially at tissue sites where they regulate distinct aspects of immunity. Increased understanding of the specialized functions of these receptors will inform the rational application of therapies that target these receptors to the clinic.


Assuntos
Antígenos CD/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Tolerância Imunológica , Receptores Imunológicos/metabolismo , Linfócitos T/imunologia , Animais , Antígeno CTLA-4/metabolismo , Humanos , Ativação Linfocitária , Receptor de Morte Celular Programada 1/metabolismo , Receptor Cross-Talk , Transdução de Sinais , Proteína do Gene 3 de Ativação de Linfócitos
17.
Nature ; 558(7710): 454-459, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899446

RESUMO

The expression of co-inhibitory receptors, such as CTLA-4 and PD-1, on effector T cells is a key mechanism for ensuring immune homeostasis. Dysregulated expression of co-inhibitory receptors on CD4+ T cells promotes autoimmunity, whereas sustained overexpression on CD8+ T cells promotes T cell dysfunction or exhaustion, leading to impaired ability to clear chronic viral infections and diseases such as cancer1,2. Here, using RNA and protein expression profiling at single-cell resolution in mouse cells, we identify a module of co-inhibitory receptors that includes not only several known co-inhibitory receptors (PD-1, TIM-3, LAG-3 and TIGIT) but also many new surface receptors. We functionally validated two new co-inhibitory receptors, activated protein C receptor (PROCR) and podoplanin (PDPN). The module of co-inhibitory receptors is co-expressed in both CD4+ and CD8+ T cells and is part of a larger co-inhibitory gene program that is shared by non-responsive T cells in several physiological contexts and is driven by the immunoregulatory cytokine IL-27. Computational analysis identified the transcription factors PRDM1 and c-MAF as cooperative regulators of the co-inhibitory module, and this was validated experimentally. This molecular circuit underlies the co-expression of co-inhibitory receptors in T cells and identifies regulators of T cell function with the potential to control autoimmunity and tumour immunity.


Assuntos
Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Redes Reguladoras de Genes/genética , Melanoma/imunologia , Transcrição Gênica , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Interleucina-27/imunologia , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Melanoma/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Proteínas Proto-Oncogênicas c-maf/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Reprodutibilidade dos Testes
18.
Immunity ; 41(2): 270-82, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25065622

RESUMO

The ß-galactoside-binding protein galectin-9 is critical in regulating the immune response, but the mechanism by which it functions remains unclear. We have demonstrated that galectin-9 is highly expressed by induced regulatory T cells (iTreg) and was crucial for the generation and function of iTreg cells, but not natural regulatory T (nTreg) cells. Galectin-9 expression within iTreg cells was driven by the transcription factor Smad3, forming a feed-forward loop, which further promoted Foxp3 expression. Galectin-9 increased iTreg cell stability and function by directly binding to its receptor CD44, which formed a complex with transforming growth factor-ß (TGF-ß) receptor I (TGF-ßRI), and activated Smad3. Galectin-9 signaling was further found to regulate iTreg cell induction by dominantly acting through the CNS1 region of the Foxp3 locus. Our data suggest that exogenous galectin-9, in addition to being an effector molecule for Treg cells, acts synergistically with TGF-ß to enforce iTreg cell differentiation and maintenance.


Assuntos
Fatores de Transcrição Forkhead/biossíntese , Galectinas/imunologia , Receptores de Hialuronatos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular/imunologia , Colite/genética , Colite/imunologia , Galectinas/genética , Receptor Celular 2 do Vírus da Hepatite A , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/imunologia , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/imunologia , Receptores Virais/imunologia , Transdução de Sinais/imunologia , Proteína Smad3/imunologia , Fator de Crescimento Transformador beta/imunologia
19.
J Pathol ; 257(2): 186-197, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35119692

RESUMO

Colorectal carcinoma (CRC) is the second leading cause of cancer mortality worldwide. CRC is stratified into two major groups: microsatellite stable (MSS) and microsatellite instability-high (MSI-H). MSS CRC constitutes the majority of cases, has worse overall prognosis, and thus far has failed to respond to immunotherapies targeting the immune checkpoint receptors PD-1, PD-L1, and CTLA-4. Here we examined the alternate immunotherapy targets Tim-3 and Lag-3, as well as PD-1, on immune cells in a cohort of MSS CRC using immunohistochemistry and flow cytometry together with mutational analysis and clinical data. We found that PD-1 was variably expressed across CD4+ tumor-infiltrating lymphocyte (TIL) subtypes, and Tim-3 was mostly restricted to CD4+ regulatory T cells. Lag-3, when detected by flow cytometry, was largely coexpressed with Tim-3 and PD-1 in CD4+ TILs. Furthermore, Tim-3+ PD-1+ CD8+ TILs accumulated in the tumor and exhibited a dysfunctional or 'exhausted' phenotype. Notably, we observed a subset of patients with a high proportion of Tim-3- PD-1- CD8+ TILs and, conversely, a low proportion of Tim-3+ PD-1+ CD8+ TILs, thus stratifying MSS CRC patients based on a feature of immune exhaustion (MSS-ImmEx). MSS-ImmExhi patients had abundant Tim-3+ PD-1+ CD8+ TILs, PD-1+ CD4+ effector, and regulatory T cells, and were enriched for left-sided colon tumors and mutations in the APC tumor-suppressor gene. We further investigated the spatial organization of Tim-3, Lag-3, PD-1, and PD-L1 by immunohistochemistry and found higher levels in the tumor margin; however, MSS-ImmExhi tumors exhibited a higher density of Tim-3+ cells in the tumor center over MSS-ImmExlow tumors. Immunofluorescence revealed a higher density of PD-1+ /CD8+ cells in the tumor center in this group. Our findings identify a subset of MSS CRC that exhibits evidence of higher prior immune activation (MSS-ImmExhi ) in which therapies targeting Tim-3 in conjunction with anti-PD-1 or other immunotherapies may provide clinical benefit. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Colorretais , Receptor Celular 2 do Vírus da Hepatite A , Antígeno B7-H1 , Linfócitos T CD8-Positivos , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Receptor Celular 2 do Vírus da Hepatite A/genética , Humanos , Repetições de Microssatélites , Receptor de Morte Celular Programada 1/genética
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA