Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 49(11): 6510-8, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25970261

RESUMO

There is a critical need to develop appropriate management strategies for 1,4-dioxane (dioxane) due to its widespread occurrence and perceived recalcitrance at groundwater sites where chlorinated solvents are present. A comprehensive evaluation of California state (GeoTracker) and Air Force monitoring records was used to provide significant evidence of dioxane attenuation at field sites. Temporal changes in the site-wide maximum concentrations were used to estimate source attenuation rates at the GeoTracker sites (median length of monitoring period = 6.8 years). While attenuation could not be established at all sites, statistically significant positive attenuation rates were confirmed at 22 sites. At sites where dioxane and chlorinated solvents were present, the median value of all statistically significant dioxane source attenuation rates (equivalent half-life = 31 months; n = 34) was lower than 1,1,1-trichloroethane (TCA) but similar to 1,1-dichloroethene (1,1-DCE) and trichloroethene (TCE). Dioxane attenuation rates were positively correlated with rates for 1,1-DCE and TCE but not TCA. At this set of sites, there was little evidence that chlorinated solvent remedial efforts (e.g., chemical oxidation, enhanced bioremediation) impacted dioxane attenuation. Attenuation rates based on well-specific records from the Air Force data set confirmed significant dioxane attenuation (131 out of 441 wells) at a similar frequency and extent (median equivalent half-life = 48 months) as observed at the California sites. Linear discriminant analysis established a positive correlation between dioxane attenuation and increasing concentrations of dissolved oxygen, while the same analysis found a negative correlation with metals and CVOC concentrations. The magnitude and prevalence of dioxane attenuation documented here suggest that natural attenuation may be used to manage some but not necessarily all dioxane-impacted sites.


Assuntos
Dioxanos/análise , Água Subterrânea/química , Halogenação , Solventes/química , Poluentes Químicos da Água/análise , California , Dicloroetilenos/análise , Dioxanos/química , Análise Discriminante , Meia-Vida , Cinética , Tricloroetanos/análise , Tricloroetileno/análise
2.
Sci Total Environ ; 740: 140017, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32927568

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are contaminants of critical concern due to their persistence, widespread distribution in the environment, and potential human-health impacts. In this work, published studies of PFAS concentrations in soils were compiled from the literature. These data were combined with results obtained from a large curated database of PFAS soil concentrations for contaminated sites. In aggregate, the compiled data set comprises >30,000 samples collected from >2500 sites distributed throughout the world. Data were collected for three types of sites- background sites, primary-source sites (fire-training areas, manufacturing plants), and secondary-source sites (biosolids application, irrigation water use). The aggregated soil-survey reports comprise samples collected from all continents, and from a large variety of locations in both urban and rural regions. PFAS were present in soil at almost every site tested. Low but measurable concentrations were observed even in remote regions far from potential PFOS sources. Concentrations reported for PFAS-contaminated sites were generally orders-of-magnitude greater than background levels, particularly for PFOS. Maximum reported PFOS concentrations ranged upwards of several hundred mg/kg. Analysis of depth profiles indicates significant retention of PFAS in the vadose zone over decadal timeframes and the occurrence of leaching to groundwater. It is noteworthy that soil concentrations reported for PFAS at contaminated sites are often orders-of-magnitude higher than typical groundwater concentrations. The results of this study demonstrate that PFAS are present in soils across the globe, and indicate that soil is a significant reservoir for PFAS. A critical question of concern is the long-term migration potential to surface water, groundwater, and the atmosphere. This warrants increased focus on the transport and fate behavior of PFAS in soil and the vadose zone, in regards to both research and site investigations.

3.
Chemosphere ; 150: 678-685, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26786021

RESUMO

The use of aqueous film-forming foam (AFFF) to extinguish hydrocarbon-based fires is recognized as a significant source of environmental poly- and perfluoroalkyl substances (PFASs). Although the occurrence of select PFASs in soil and groundwater at former fire-training areas (FTAs) at military installations operable since 1970 has been consistently confirmed, studies reporting the occurrence of PFASs at other AFFF-impacted sites (e.g. emergency response locations, AFFF lagoons, hangar-related AFFF storage tanks and pipelines, and fire station testing and maintenance areas) are largely missing from the literature. Further, studies have mostly focused on a single site (i.e., FTAs at military installations) and, thus, lack a comparison of sites with diverse AFFF release history. Therefore, the purpose of this investigation was to evaluate select PFAS occurrence at non-FTA sites on active U.S. Air Force installations with historic AFFF use of varying magnitude. Concentrations of fifteen perfluoroalkyl acids (PFAAs) and perfluorooctane sulfonamide (PFOSA), an important PFOS precursor, were measured from several hundred samples among multiple media (i.e., surface soil, subsurface soil, sediment, surface water, and groundwater) collected from forty AFFF-impacted sites across ten installations between March and September 2014, representing one of the most comprehensive datasets on environmental PFAS occurrence to date. Differences in detection frequencies and observed concentrations due to AFFF release volume are presented along with rigorous data analyses that quantitatively demonstrate phase-dependent (i.e., solid-phase vs aqueous-phase) differences in the chemical signature as a function of carbon chain-length and in situ PFOS (and to a slightly lesser extent PFHxS) formation, presumably due to precursor biotransformation.


Assuntos
Fluorocarbonos/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Incêndios , Água Subterrânea/química , Instalações Militares , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA