Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Muscle Nerve ; 60(6): 790-800, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31531871

RESUMO

INTRODUCTION: Reduced expression of the vesicular acetylcholine transporter (VAChT) leads to changes in the distribution and shape of synaptic vesicles (SVs) at neuromuscular junctions (NMJs), suggesting vesicular acetylcholine (ACh) as a key component of synaptic structure and function. It is poorly understood how long-term changes in cholinergic transmission contribute to age- and disease-related degeneration in the motor system. METHODS: In this study we performed confocal imaging, electrophysiology, electron microscopy, and analyses of respiratory mechanics of the diaphragm NMJ components in 12-month-old wild-type (WT) and VAChTKDHOM mice. RESULTS: Diaphragms of NMJs of the VAChTKDHOM mice were similar to those in WT mice in number, colocalization, and fragmentation of pre-/postsynaptic components. However, they had increased spontaneous SV exocytosis, miniature endplate potential frequency, and diminished MEPP amplitude. No impairment in respiratory mechanics at rest was observed, probably due to the large neurotransmission safety factor of the diaphragm. DISCUSSION: The present findings help us to understand the consequences of reduced ACh release at the NMJs during aging.


Assuntos
Envelhecimento/patologia , Diafragma/ultraestrutura , Síndromes Miastênicas Congênitas/patologia , Junção Neuromuscular/ultraestrutura , Vesículas Sinápticas/ultraestrutura , Acetilcolina/metabolismo , Envelhecimento/metabolismo , Animais , Diafragma/metabolismo , Diafragma/fisiopatologia , Modelos Animais de Doenças , Endocitose , Potenciais Pós-Sinápticos Excitadores/fisiologia , Exocitose , Técnicas de Silenciamento de Genes , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Placa Motora , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/metabolismo , Síndromes Miastênicas Congênitas/fisiopatologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiopatologia , Mecânica Respiratória/fisiologia , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/genética
2.
Eur J Neurosci ; 45(6): 785-796, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27992085

RESUMO

Involuntary choreiform movements are clinical hallmark of Huntington's disease, an autosomal dominant neurodegenerative disorder caused by an increased number of CAG trinucleotide repeats in the huntingtin gene. Involuntary movements start with an impairment of facial muscles and then affect trunk and limbs muscles. Huntington's disease symptoms are caused by changes in cortex and striatum neurons induced by mutated huntingtin protein. However, little is known about the impact of this abnormal protein in spinal cord motoneurons that control movement. Therefore, in this study we evaluated abnormalities in the motor unit (spinal cervical motoneurons, motor axons, neuromuscular junctions and muscle) in a mouse model for Huntington's disease (BACHD). Using light, fluorescence, confocal, and electron microscopy, we showed significant changes such as muscle fibers atrophy, fragmentation of neuromuscular junctions, axonal alterations, and motoneurons death in BACHD mice. Noteworthy, the surviving motoneurons from BACHD spinal cords were smaller than WT. We suggest that this loss of larger putative motoneurons is accompanied by a decrease in the expression of fast glycolytic muscle fibers in this model for Huntington's disease. These observations show spinal cord motoneurons loss in BACHD that might help to understand neuromuscular changes in Huntington's disease.


Assuntos
Doença de Huntington/patologia , Neurônios Motores/patologia , Atrofia Muscular/patologia , Animais , Vértebras Cervicais/patologia , Masculino , Camundongos , Músculo Esquelético/patologia , Junção Neuromuscular/patologia , Medula Espinal/patologia
3.
FEBS J ; 286(1): 110-123, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30451379

RESUMO

Huntington's disease (HD) is a neurodegenerative genetic disorder. Although described as a brain pathology, there is evidence suggesting that defects in other systems can contribute to disease progression. In line with this, cardiovascular defects are a major cause of death in HD. To date, relatively little is known about the peripheral abnormalities associated with the disease. Here, we applied a range of assays to evaluate cardiac electro-mechanical properties in vivo, using a previously characterized mouse model of HD (BACHD), and in vitro, using cardiomyocytes isolated from the same mice. We observed conduction disturbances including QT interval prolongation in BACHD mice, indicative of cardiac dysfunction. Cardiomyocytes from these mice demonstrated cellular electro-mechanical abnormalities, including a prolonged action potential, arrhythmic contractions, and relaxation disturbances. Cellular arrhythmia was accompanied by an increase in calcium waves and increased Ca2+ /calmodulin-dependent protein kinase II activity, suggesting that disruption of calcium homeostasis plays a key part. We also described structural abnormalities in the mitochondria of BACHD-derived cardiomyocytes, indicative of oxidative stress. Consistent with this, imbalances in superoxide dismutase and glutathione peroxidase activities were detected. Our data provide an in vivo demonstration of cardiac abnormalities in HD together with new insights into the cellular mechanistic basis, providing a possible explanation for the higher cardiovascular risk in HD.


Assuntos
Arritmias Cardíacas/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Doença de Huntington/fisiopatologia , Mitocôndrias/patologia , Miócitos Cardíacos/patologia , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Arritmias Cardíacas/metabolismo , Fenômenos Biomecânicos , Fenômenos Eletrofisiológicos , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA