Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 210(12): 1925-1937, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37098890

RESUMO

COVID-19 has accounted for more than 6 million deaths worldwide. Bacillus Calmette-Guérin (BCG), the existing tuberculosis vaccine, is known to induce heterologous effects over other infections due to trained immunity and has been proposed to be a potential strategy against SARS-CoV-2 infection. In this report, we constructed a recombinant BCG (rBCG) expressing domains of the SARS-CoV-2 nucleocapsid and spike proteins (termed rBCG-ChD6), recognized as major candidates for vaccine development. We investigated whether rBCG-ChD6 immunization followed by a boost with the recombinant nucleocapsid and spike chimera (rChimera), together with alum, provided protection against SARS-CoV-2 infection in K18-hACE2 mice. A single dose of rBCG-ChD6 boosted with rChimera associated with alum elicited the highest anti-Chimera total IgG and IgG2c Ab titers with neutralizing activity against SARS-CoV-2 Wuhan strain when compared with control groups. Importantly, following SARS-CoV-2 challenge, this vaccination regimen induced IFN-γ and IL-6 production in spleen cells and reduced viral load in the lungs. In addition, no viable virus was detected in mice immunized with rBCG-ChD6 boosted with rChimera, which was associated with decreased lung pathology when compared with BCG WT-rChimera/alum or rChimera/alum control groups. Overall, our study demonstrates the potential of a prime-boost immunization system based on an rBCG expressing a chimeric protein derived from SARS-CoV-2 to protect mice against viral challenge.


Assuntos
COVID-19 , Mycobacterium bovis , Animais , Camundongos , Vacina BCG/genética , Proteínas Recombinantes de Fusão/genética , SARS-CoV-2 , Vacinas Sintéticas , COVID-19/prevenção & controle , Mycobacterium bovis/genética
2.
Antimicrob Agents Chemother ; 60(8): 4482-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27161624

RESUMO

Antimony (Sb) resistance in leishmaniasis chemotherapy has become one of the major challenges to the control of this spreading worldwide public health problem. Since the plasma membrane pore-forming protein aquaglyceroporin 1 (AQP1) is the major route of Sb uptake in Leishmania, functional studies are relevant to characterize drug transport pathways in the parasite. We generated AQP1-overexpressing Leishmania guyanensis and L. braziliensis mutants and investigated their susceptibility to the trivalent form of Sb (Sb(III)) in the presence of silver and nitrate salts. Both AQP1-overexpressing lines presented 3- to 4-fold increased AQP1 expression levels compared with those of their untransfected counterparts, leading to an increased Sb(III) susceptibility of about 2-fold. Competition assays using silver nitrate, silver sulfadiazine, or silver acetate prior to Sb(III) exposure increased parasite growth, especially in AQP1-overexpressing mutants. Surprisingly, Sb(III)-sodium nitrate or Sb(III)-potassium nitrate combinations showed significantly enhanced antileishmanial activities compared to those of Sb(III) alone, especially against AQP1-overexpressing mutants, suggesting a putative nitrate-dependent modulation of AQP1 activity. The intracellular level of antimony quantified by graphite furnace atomic absorption spectrometry showed that the concomitant exposure to Sb(III) and nitrate favors antimony accumulation in the parasite, increasing the toxicity of the drug and culminating with parasite death. This is the first report showing evidence of AQP1-mediated Sb(III) susceptibility modulation by silver in Leishmania and suggests the potential antileishmanial activity of the combination of nitrate salts and Sb(III).


Assuntos
Antimônio/farmacologia , Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Nitratos/farmacologia , Prata/farmacologia , Leishmania/genética , Leishmania/metabolismo , Leishmania braziliensis/efeitos dos fármacos , Leishmania braziliensis/genética , Leishmania braziliensis/metabolismo , Testes de Sensibilidade Parasitária , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
3.
Parasit Vectors ; 7: 406, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25174795

RESUMO

BACKGROUND: Tryparedoxin peroxidase (TXNPx) participates in defence against oxidative stress as an antioxidant by metabolizing hydrogen peroxide into water molecules. Reports suggest that drug-resistant parasites may increase the levels of TXNPx and other enzymes, thereby protecting them against oxidative stress. METHODS: In this study, the gene encoding cytosolic TXNPx (cTXNPx) was characterized in lines of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) infantum that are susceptible and resistant to potassium antimony tartrate (Sb(III)). We investigated the levels of mRNA and genomic organization of the cTXNPx gene. In addition, we transfected the Leishmania lines with the cTXNPx gene and analysed the susceptibility of transfected parasites to Sb(III) and to hydrogen peroxide (H2O2). RESULTS: Northern blot and real-time reverse transcriptase polymerase chain reaction analyses revealed that the level of TXNPx mRNA was approximately 2.5-fold higher in the Sb(III)-resistant L. braziliensis line than in the parental line. In contrast, no significant difference in cTXNPx mRNA levels between the L. infantum lines was observed. Southern blot analyses revealed that the cTXNPx gene is not amplified in the genome of the Sb(III)-resistant Leishmania lines analysed. Functional analysis of cTXNPx was performed to determine whether overexpression of the enzyme in L. braziliensis and L. infantum lines would change their susceptibility to Sb(III). Western blotting analysis showed that the level of cTXNPx was 2 to 4-fold higher in transfected clones compared to non-transfected cells. Antimony susceptibility test (EC50 assay) revealed that L. braziliensis lines overexpressing cTXNPx had a 2-fold increase in resistance to Sb(III) when compared to the untransfected parental line. In addition, these clones are more tolerant to exogenous H2O2 than the untransfected parental line. In contrast, no difference in Sb(III) susceptibility and a moderate index of resistance to H2O2 was observed in L. infantum clones overexpressing cTXNPx. CONCLUSION: Our functional analysis revealed that cTXNPx is involved in the antimony-resistance phenotype in L. braziliensis.


Assuntos
Antimônio/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Leishmania braziliensis/enzimologia , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/enzimologia , Peroxidases/metabolismo , Proteínas de Protozoários/metabolismo , Antiprotozoários/farmacologia , Resistência a Medicamentos , Regulação Enzimológica da Expressão Gênica , Genômica , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-24533304

RESUMO

ATP-binding cassette (ABC) transporters have been associated with drug resistance in various diseases. The MRPA gene, a transporter of ABCC subfamily, is involved in the resistance by sequestering metal-thiol conjugates in intracellular vesicles of Leishmania parasite. In this study, we performed the molecular characterization of the MRPA transporter, analysis of P-glycoprotein (Pgp) and aquaglyceroporin-1 (AQP1) expression, and determination of antimony level in antimony-susceptible and -resistant lines of L. (V.) guyanensis, L. (L.) amazonensis, L. (V.) braziliensis and L. (L.) infantum. PFGE analysis revealed an association of chromosomal amplification of MRPA gene with the drug resistance phenotype in all SbIII-resistant Leishmania lines analyzed. Levels of mRNA from MRPA gene determined by real-time quantitative RT-PCR showed an increased expression of two fold in SbIII-resistant lines of Leishmania guyanensis, Leishmania amazonensis and Leishmania braziliensis. Western blot analysis revealed that Pgp is increased in the SbIII-resistant L. guyanensis and L. amazonensis lines. The intracellular level of antimony quantified by graphite furnace atomic absorption spectrometry showed a reduction in the accumulation of this element in SbIII-resistant L. guyanensis, L. amazonensis and L. braziliensis lines when compared to their susceptible counterparts. Interestingly, a down-regulation of AQP1 protein was observed in the SbIII-resistant L. guyanensis and L. amazonensis lines, contributing for decreasing of SbIII entry in these lines. In addition, efflux experiments revealed that the rates of SbIII efflux are higher in the SbIII-resistant lines of L. guyanensis and L. braziliensis, that may explain also the low SbIII concentration within of these parasites. The BSO, an inhibitor of γ-glutamylcysteine synthetase enzyme, reversed the SbIII-resistance phenotype of L. braziliensis and caused an increasing in the Sb intracellular level in the LbSbR line. Our data indicate that the mechanisms of antimony-resistance are different among species of Leishmania analyzed in this study.

5.
Mol Biochem Parasitol ; 190(2): 63-75, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23831370

RESUMO

The emergence of drug-resistant Leishmania species is a significant problem in several countries. A comparative proteomic analysis of antimony-susceptible and antimony-resistant Leishmania braziliensis (LbSbR) and Leishmania infantum chagasi (LcSbR) lines was carried out using two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (LC/MS/MS) for protein identification. Out of 132 protein spots exclusive or up-regulated submitted to MS, we identified 80 proteins that corresponded to 57 distinct proteins. Comparative analysis of data showed that most of the protein spots with differential abundance in both species are involved in antioxidant defense, general stress response, glucose and amino acid metabolism, and cytoskeleton organization. Five proteins were commonly more abundant in both SbIII-resistant Leishmania lines: tryparedoxin peroxidase, alpha-tubulin, HSP70, HSP83, and HSP60. Analysis of the protein abundance by Western blotting assays confirmed our proteomic data. These assays revealed that cyclophilin-A is less expressed in both LbSbR and LcSbR lines. On the other hand, the expression of pteridine reductase is higher in the LbSbR line, whereas tryparedoxin peroxidase is overexpressed in both LbSbR and LcSbR lines. Together, these results show that the mechanism of antimony-resistance in Leishmania spp. is complex and multifactorial.


Assuntos
Antimônio/toxicidade , Resistência a Medicamentos , Leishmania braziliensis/química , Leishmania braziliensis/efeitos dos fármacos , Leishmania infantum/química , Leishmania infantum/efeitos dos fármacos , Proteoma/análise , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Proteômica , Proteínas de Protozoários/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA