Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
IUBMB Life ; 75(9): 732-742, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37086464

RESUMO

Beyond its actions on the nervous system, amitriptyline (AM) has been shown to lower inflammatory, angiogenic, and fibrogenic markers in a few pathological conditions in human and in experimental animal models. However, its effects on foreign body reaction (FBR), a complex adverse healing process, after biomedical material implantation are not known. We have evaluated the effects of AM on the angiogenic and fibrogenic components on a model of implant-induced FBR. Sponge disks were implanted subcutaneously in C57BL/6 mice, that were treated daily with oral administration of AM (5 mg/kg) for seven consecutive days in two protocols: treatment was started on the day of surgery and the implants were removed on the seventh day after implantation and treatment started 7 days after implantation and the implants removed 14 after implantation. None of the angiogenic (vessels, Vascular endothelial growth factor (VEGF), and interleukin-1ß (IL-1ß) or fibrogenic parameters (collagen, TGF-ß, and fibrous capsule) and giant cell numbers analyzed were attenuated by AM in 7-day-old implants. However, AM was able to downregulate angiogenesis and FBR in 14-day-old implants. The effects of AM described here expands its range of actions as a potential agent capable of attenuating fibroproliferative processes that may impair functionality of implantable devices.


Assuntos
Amitriptilina , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Humanos , Amitriptilina/farmacologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos Endogâmicos C57BL , Reação a Corpo Estranho/induzido quimicamente , Reação a Corpo Estranho/metabolismo , Reação a Corpo Estranho/patologia , Colágeno/metabolismo
2.
Exp Physiol ; 108(1): 146-157, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459573

RESUMO

NEW FINDINGS: What is the central question of this study? Peritoneal injury can result in a persistent fibroproliferative process in the abdominal cavity, causing pain and loss of function of internal organs. This study aimed to demonstrate the use of sodium butyrate (NaBu) as a potential agent to attenuate peritoneal fibrosis induced by a synthetic matrix. What is the main finding and its importance? Our findings provide the first evidence that NaBu attenuates the inflammatory, angiogenesis and fibrogenesis axes involved in the formation of peritoneal fibrovascular tissue, indicating the potential of this compound to ameliorate peritoneal fibrosis. ABSTRACT: The aim of this study was to identify the bio-efficacy of sodium butyrate (NaBu) on preventing the development of peritoneal fibrovascular tissue induced by implantation of a synthetic matrix in the abdominal cavity. Polyether-polyurethane sponge discs were implanted in the peritoneal cavity of mice, which were treated daily with oral administration of NaBu (100 mg/kg). Control animals received water (100 µl). After 7 days, the implants were removed for assessment of inflammatory, angiogenic and fibrogenic markers. Compared with control values, NaBu treatment decreased mast cell recruitment/activation, inflammatory enzyme activities, levels of pro-inflammatory cytokines, and the proteins p65 and p50 of the nuclear factor-κB pathway. Angiogenesis, as determined by haemoglobin content, vascular endothelial growth factor levels and the number of blood vessels in the implant, was reduced by the treatment. In NaBu-treated animals, the predominant collagen present in the abdominal fibrovascular tissue was thin collagen, whereas in control implants it was thick collagen. Transforming growth factor-ß1 levels were also lower in implants of treated animals. Sodium butyrate downregulated the inflammatory, angiogenesis and fibrogenesis axes of the fibroproliferative tissue induced by the intraperitoneal synthetic matrix. This compound has potential to control/regulate chronic inflammation and adverse healing processes in the abdominal cavity.


Assuntos
Fibrose Peritoneal , Camundongos , Animais , Ácido Butírico/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Colágeno/metabolismo
3.
Microvasc Res ; 139: 104277, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34752815

RESUMO

Implantation of biomedical/synthetic devices to replace and/or repair biological tissues very often induces an adverse healing response (scarce angiogenesis, excessive collagen deposition) which is detrimental to implant functionality and integration to host tissue. Interleukin-33/ST2 axis (IL-33/ST2) has been shown to modulate angiogenic and remodeling processes in several types of injuries. However, its effects on these processes after implantation of synthetic matrix have not been reported. Using synthetic matrix of polyether-polyurethane implanted subcutaneously in mice lacking ST2 receptor (ST2/KO), we characterized neovascularization and matrix remodeling in the fibrovascular tissue induced by the implants. Tissue accumulation was increased inside and around the implants in KO implants relative to the wild type (WT). More intense proliferative activity, using CDC 47 marker, was observed in KO implants compared with that of WT implants. Angiogenesis, using two endothelial cell markers, Von Willebrand Factor (VWF) and vascular endothelial cell VE cadherin and hemoglobin content, increased in implants of KO mice relative to control WT. Remodeling of the newly formed fibrovascular tissue (soluble collagen and PicroSirius Red-stained histological sections) showed predominance of type 1 collagen in ST2-KO implants versus type 3 in control implants. The number of positive cells for caspase-3, apoptotic marker, decreased in ST2 group. Our findings evidenced a role of IL-33/ST2 axis in restraining blood vessel formation and regulating the pattern of matrix remodeling in the fibrovascular tissue induced by synthetic implants. Intervention in this cytokine complex holds potential to accelerate integration of biomaterial and host tissue by improving blood supply and matrix remodeling.


Assuntos
Matriz Extracelular/metabolismo , Reação a Corpo Estranho/metabolismo , Mediadores da Inflamação/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/deficiência , Interleucina-33/metabolismo , Neovascularização Fisiológica , Tela Subcutânea/metabolismo , Cicatrização , Animais , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/patologia , Fibrose , Reação a Corpo Estranho/etiologia , Reação a Corpo Estranho/genética , Reação a Corpo Estranho/patologia , Deleção de Genes , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Knockout , Polietilenoglicóis , Poliuretanos , Transdução de Sinais , Tela Subcutânea/patologia , Tampões de Gaze Cirúrgicos , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 320(3): H1066-H1079, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33356962

RESUMO

Butyrate is a short-chain fatty acid (SCFA) derived from microbiota and is involved in a range of cell processes in a concentration-dependent manner. Low concentrations of sodium butyrate (NaBu) were shown to be proangiogenic. However, the mechanisms associated with these effects are not yet fully known. Here, we investigated the contribution of the SCFA receptor GPR43 in the proangiogenic effects of local treatment with NaBu and its effects on matrix remodeling using the sponge-induced fibrovascular tissue model in mice lacking the Gpr43 gene (Gpr43-KO) and the wild-type (WT) mice. We demonstrated that NaBu (0.2 mM intraimplant) treatment enhanced the neovascularization process, blood flow, and VEGF levels in a GPR43-dependent manner in the implants. Moreover, NaBu was able to modulate matrix remodeling aspects of the granulation tissue such as proteoglycan production, collagen deposition, and α-smooth muscle actin (α-SMA) expression in vivo, besides increasing transforming growth factor (TGF)-ß1 levels in the fibrovascular tissue, in a GPR43-dependent manner. Interestingly, NaBu directly stimulated L929 murine fibroblast migration and TGF-ß1 and collagen production in vitro. GPR43 was found to be expressed in human dermal fibroblasts, myofibroblasts, and endothelial cells. Overall, our findings evidence that the metabolite-sensing receptor GPR43 contributes to the effects of low dose of NaBu in inducing angiogenesis and matrix remodeling during granulation tissue formation. These data provide important insights for the proposition of new therapeutic approaches based on NaBu, beyond the highly explored intestinal, anti-inflammatory, and anticancer purposes, as a local treatment to improve tissue repair, particularly, by modulating granulation tissue components.NEW & NOTEWORTHY Our data show the contribution of the metabolite-sensing receptor GPR43 in the effects of low dose of sodium butyrate (NaBu) on stimulating angiogenesis and extracellular matrix remodeling in a model of granulation tissue formation in mice. We also show that human dermal fibroblasts, myofibroblasts, and endothelial cells express the receptor GPR43. These data provide important insights for the use of NaBu in local therapeutic approaches applicable to tissue repair in sites other than the intestine.


Assuntos
Indutores da Angiogênese/administração & dosagem , Ácido Butírico/administração & dosagem , Matriz Extracelular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Tecido de Granulação/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Tecido de Granulação/metabolismo , Tecido de Granulação/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Tampões de Gaze Cirúrgicos , Fator de Crescimento Transformador beta1/metabolismo
5.
Microvasc Res ; 131: 104014, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32450153

RESUMO

The damaging effects of obesity extend to multiple pre-existing tissue/organs. However, the influence of this condition on key components (inflammation and angiogenesis) of fibrovascular connective proliferating tissue, essential in repair processes, has been neglected. Our objective in this study was to investigate whether obesity would influence inflammatory-angiogenesis induced by synthetic matrix of polyether-polyurethane implanted subcutaneously in high-fat-fed obese C57/BL6 mice. Fourteen days after implantation, the inflammatory and angiogenic components of the newly formed tissue intra-implant were evaluated. The pro-inflammatory enzyme activities, myeloperoxidase (MPO) and N-acetyl-ß-D-glucosaminidase (NAG), the levels of TNF-α, CXCL1/KC and CCL2 and NF-κB transcription factor were examined. Angiogenesis was determined by morphometric analysis of implant blood vessels, intra-implant levels of hemoglobin content, VEGF levels, and western blot for VEGFR2. All inflammatory and angiogenic markers were increased in the implants of obese mice compared with their non-obese counterparts. Similarly, activation of the NF-κB pathway and phosphorylation of VEGFR2 were higher in implants of obese mice (1.60 ± 0.28 Np65/Cp65; 0.96 ± 0.08 p-VEGFR2/VEGFR2-T) compared with implants of non-obese animals (1.40 ± 0.14; 0.49 ± 0.08). These observations suggest that obesity exerts critical role in sponge-induced inflammatory-angiogenesis, possibly by activating fibrovascular components in the inflamed microenvironment. Thus, this pathological condition causes damage not only to pre-existing tissues/organs but also to newly formed proliferating fibrovascular tissue. This is relevant to the development of therapeutic approaches to improve healing processes in patients with obesity.


Assuntos
Materiais Biocompatíveis , Reação a Corpo Estranho/etiologia , Mediadores da Inflamação/metabolismo , Inflamação/etiologia , Neovascularização Fisiológica , Obesidade/complicações , Polietilenoglicóis , Poliuretanos , Cicatrização , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Reação a Corpo Estranho/metabolismo , Reação a Corpo Estranho/patologia , Reação a Corpo Estranho/fisiopatologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/patologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
J Nat Prod ; 83(12): 3698-3705, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33232149

RESUMO

Drimys brasiliensis (Winteraceae) has been investigated in traditional medicine for its anti-inflammatory properties to treat gastric ulcers and allergic and respiratory system diseases as well as for cancer treatment. In this work, we investigate the ability of the sesquiterpene polygodial, isolated from D. brasiliensis stem barks, to modulate the chronic inflammatory response induced by polyester-polyurethane sponge implants in C57BL/6J mice. Daily treatment with polygodial inhibited the macrophage content in the implants as determined by the activity of the N-acetyl-ß-d-glucosaminidase enzyme as well as decreased the levels of CXCL1/KC and CCL2/JE/MCP-1 pro-inflammatory chemokines and the presence of mast cells along the formed fibrovascular tissue. Similarly, the deposition of a new extracellular matrix (total collagen and type I and III collagen fibers) as well as the production of the TGF-ß1 cytokine were attenuated in implants treated with polygodial, showing for the first time its antifibrogenic capacity. The hemoglobin content, the number of newly formed vessels, and the levels of VEGF cytokine, which were used as parameters for the assessment of the neovascularization of the implants, did not change after treatment with polygodial. The anti-inflammatory and antifibrogenic effects of polygodial over the components of the granulation tissue induced by the sponge implant indicate a therapeutic potential for the treatment of inflammatory diseases associated with the development of fibrovascular tissue.


Assuntos
Regulação para Baixo , Drimys/química , Inflamação/prevenção & controle , Sesquiterpenos/isolamento & purificação , Winteraceae/química , Animais , Fibrose/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL
7.
Pancreatology ; 18(2): 221-229, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29289464

RESUMO

BACKGROUND/OBJECTIVES: Pancreas regenerative capacity after injury is not always sufficient to comply with the body's requirement of digestive enzymes and hormones. We present an alternative system to induce pancreas parenchyma proliferation (exocrine and endocrine components), rather than regeneration or remodeling in normoglycemic mice. METHODS: Porous discs of polyether-polyurethane were surgically placed adjacent to the native pancreas and removed at days 15, 30 and 45 after implantation. No exogenous growth factors or extracellular matrix components were added to the platform. The synthetic matrix provided a platform that was filled with parenchymal and non-parenchymal pancreas tissue as detected by histological analysis. Immunohistochemistry analysis were performed to identify insulin positive cells in the newly formed tissue. In addition, angiogenic, inflammatory and metabolic parameters were carried out in those mice. RESULTS: At day 15, the pores of the platform were filled with inflammatory cells, spindled-shaped like fibroblasts, extracellular matrix components, blood vessels and clusters of pancreatic parenchyma (acini, ducts and islet-like structures). At days 30 and 45 the pancreas features remained well organized; its organization resembled that of a native pancreas. Interestingly, besides islet-like structures that showed positive cells to insulin, some ductal cells were also positive for insulin immunostaining. No significant differences in serum glucose and c-peptide concentrations during the experimental period were detected. CONCLUSIONS: The plain synthetic porous platform (without addition of exogenous molecules) placed adjacent to the native organ exhibits potential to restore and/or expand exocrine (acini, ducts) and endocrine (ß-cell mass) components in pancreatic injuries and in high metabolic demand.


Assuntos
Pâncreas/fisiologia , Tecido Parenquimatoso/fisiologia , Engenharia Tecidual , Alicerces Teciduais , Animais , Proliferação de Células , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polímeros/metabolismo , Poliuretanos
8.
Microvasc Res ; 97: 130-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25446369

RESUMO

Acute inflammation and angiogenesis are persistent features of several pathological conditions induced by biological agents leading to the resolution of local and systemic events. Glycoproteins derived from the protozoan Trypanosoma cruzi are suggested to mediate angiogenesis induced by inflammatory cells with still undescribed mechanisms. In this study, we investigated the effects of total antigen from trypomastigote forms of T. cruzi (Y strain), inoculated in sponges 24h after implantation in mice, on angiogenesis, inflammatory cell pattern and endogenous production of inflammatory and angiogenic mediators on days 1, 4, 7 and 14 post-implant. There was an increase in hemoglobin content and in the number of blood vessels associated with T. cruzi antigen stimuli on the 14th day, assessed by the hemoglobin of the implants and by morphometric analysis. However, these antigens were not able to increase type I collagen content on the 14th day. Parasite antigens also induced high production of vascular endothelial growth factor (VEGF) and inflammatory mediators TNF-alpha, CCL2 and CCL5 on the 7th day in sponges when compared to the unstimulated group. Neutrophils and macrophages were determined by measuring myeloperoxidase (MPO) and N-acetyl-ß-d-glucosaminidase (NAG) enzyme activities, respectively. Only NAG was increased after stimulation with antigens, starting from day 4 and peaking at day 7. Together, these data showed that antigens from the Y strain of T. cruzi are able to promote inflammatory neovascularization probably induced by macrophage-induced angiogenic mediators in T. cruzi antigen-stimulated sponges in Swiss mice.


Assuntos
Antígenos de Protozoários/imunologia , Inflamação/imunologia , Inflamação/parasitologia , Neovascularização Patológica , Tampões de Gaze Cirúrgicos , Trypanosoma cruzi/imunologia , Acetilglucosaminidase/metabolismo , Proteínas Angiogênicas/metabolismo , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Feminino , Inflamação/metabolismo , Inflamação/fisiopatologia , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , Infiltração de Neutrófilos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/parasitologia , Peroxidase/metabolismo , Fatores de Tempo
9.
Mediators Inflamm ; 2015: 138461, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106257

RESUMO

There is considerable interest in implantation techniques and scaffolds for tissue engineering and, for safety and biocompatibility reasons, inflammation, angiogenesis, and fibrosis need to be determined. The contribution of inducible nitric oxide synthase (iNOS) in the regulation of the foreign body reaction induced by subcutaneous implantation of a synthetic matrix was never investigated. Here, we examined the role of iNOS in angiogenesis, inflammation, and collagen deposition induced by polyether-polyurethane synthetic implants, using mice with targeted disruption of the iNOS gene (iNOS(-/-)) and wild-type (WT) mice. The hemoglobin content and number of vessels were decreased in the implants of iNOS(-/-) mice compared to WT mice 14 days after implantation. VEGF levels were also reduced in the implants of iNOS(-/-) mice. In contrast, the iNOS(-/-) implants exhibited an increased neutrophil and macrophage infiltration. However, no alterations were observed in levels of CXCL1 and CCL2, chemokines related to neutrophil and macrophage migration, respectively. Furthermore, the implants of iNOS(-/-) mice showed boosted collagen deposition. These data suggest that iNOS activity controls inflammation, angiogenesis, and fibrogenesis in polyether-polyurethane synthetic implants and that lack of iNOS expression increases foreign body reaction to implants in mice.


Assuntos
Neovascularização Patológica , Óxido Nítrico Sintase Tipo II/fisiologia , Próteses e Implantes , Animais , Colágeno/metabolismo , Fibrose , Inflamação/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Poliuretanos
10.
Drug Deliv Transl Res ; 13(5): 1420-1435, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36749480

RESUMO

The use of implantable biomaterials to replace physiological and anatomical functions has been widely investigated in the clinic. However, the selection of biomaterials is crucial for long-term function, and the implantation of certain biomaterials can cause inflammatory and fibrotic processes, triggering a foreign body reaction that leads to loss of function and consequent need for removal. Specifically, the Wnt signaling pathway controls the healing process of the human body, and its dysregulation can result in inflammation and fibrosis, such as in peritoneal fibrosis. Here, we assessed the effects of daily oral administration of a Wnt pathway inhibitor complex (CD:LGK974) to reduce the inflammatory, fibrotic, and angiogenic processes caused by intraperitoneal implants. CD:LGK974 significantly reduced the infiltration of immune cells and release of inflammatory cytokines in the implant region compared to the control groups. Furthermore, CD:LGK974 inhibited collagen deposition and reduced the expression of pro-fibrotic α-SMA and TGF-ß1, confirming fibrosis reduction. Finally, the CD:LGK974 complex decreased VEGF levels and both the number and area of blood vessels formed, suggesting decreased angiogenesis. This work introduces a potential new application of the Wnt inhibitor complex to reduce peritoneal fibrosis and the rejection of implants at the intraperitoneal site, possibly allowing for longer-term functionality of existing clinical biomaterials.


Assuntos
Fibrose Peritoneal , Humanos , Fibrose Peritoneal/complicações , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inflamação/tratamento farmacológico , Inflamação/etiologia , Reação a Corpo Estranho/etiologia , Reação a Corpo Estranho/metabolismo , Cicatrização
11.
J Mater Sci Mater Med ; 23(6): 1431-45, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22466817

RESUMO

The purpose of this study was to develop triamcinolone acetonide-loaded polyurethane implants (TA PU implants) for the local treatment of different pathologies including arthritis, ocular and neuroinflammatory disorders. The TA PU implants were characterized by FTIR, SAXS and WAXS. The in vitro and in vivo release of TA from the PU implants was evaluated. The efficacy of TA PU implants in suppressing inflammatory-angiogenesis in a murine sponge model was demonstrated. FTIR results revealed no chemical interactions between polymer and drug. SAXS results indicated that the incorporation of the drug did not disturb the polymer morphology. WAXS showed that the crystalline nature of the TA was preserved after incorporation into the PU. The TA released from the PU implants efficiently inhibited the inflammatory-angiogenesis induced by sponge discs in an experimental animal model. Finally, TA PU implants could be used as local drug delivery systems because of their controlled delivery of TA.


Assuntos
Anti-Inflamatórios/administração & dosagem , Implantes de Medicamento , Inflamação/prevenção & controle , Neovascularização Patológica/prevenção & controle , Poliuretanos , Triancinolona Acetonida/administração & dosagem , Animais , Materiais Biocompatíveis/química , Preparações de Ação Retardada , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Implantes de Medicamento/química , Feminino , Teste de Materiais , Camundongos , Microscopia Eletrônica de Varredura , Poliuretanos/química , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
12.
Curr Drug Deliv ; 19(6): 676-685, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34325632

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the third most common cancer in the world. 5- Fluorouracil (5-FU) is a conventional and most effective drug used in the clinic for the treatment of CRC. However, the clinical use of 5-FU is limited due to the acquired resistance and systemic toxicity, such as hepatotoxicity and gastrointestinal toxicity. OBJECTIVE: Recent advances in nanomedicine are being exploited to develop nanoparticle platforms to overcome resistance and therapeutic delivery of active molecules. Here, we developed 5-FU loaded sulfadiazine-poly(lactide-co-glycolide) nanoparticles (SUL-PLGA NPs) to be applied in the colorectal cancer model. METHODS: We assessed the in vivo efficacy of the SUL-PLGA NPs to enhance the antitumor effect of 5-FU. RESULTS: In vivo treatment with 5-FU-SUL-PLGA NPs significantly reduced tumor growth in a colon cancer xenograft model compared to free 5-FU and 5-FU loaded non-targeted NPs. Treatment with 5-FU-SUL-PLGA NPs also increased blood vessel diameters within tumors, which could act in conjunction to enhance antitumor efficacy. In addition, 5-FU-SUL-PLGA NPs significantly reduced liver mass and lung mass, which are the most common metastasis sites of CRC, and decreased liver hepatotoxicity compared to free 5-FU drug and 5-FU loaded non-targeted NPs. CONCLUSION: Our findings suggest that the use of 5-FU-SUL-PLGA NPs is a promising strategy to enhance 5-FU efficacy against CRC.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Neoplasias do Colo , Nanopartículas , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Humanos , Polímeros , Sulfonamidas
13.
Artigo em Inglês | MEDLINE | ID: mdl-20007259

RESUMO

Angiogenesis and inflammation are persistent features of several pathological conditions. Propolis, a sticky material that honeybees collect from living plants, has been reported to have multiple biological effects including anti-inflammatory and anti-neoplasic activities. Here, we investigated the effects of water extract of green propolis (WEP) on angiogenesis, inflammatory cell accumulation and endogenous production of cytokines in sponge implants of mice over a 14-day period. Blood vessel formation as assessed by hemoglobin content and by morphometric analysis of the implants was reduced by WEP (500 mg kg(-1) orally) compared to the untreated group. The levels of vascular endothelial growth factor (VEGF) increased progressively in the treated group but decreased after Day 10 in the control group. Accumulation of neutrophils and macrophages was determined by measuring myeloperoxidase (MPO) and N-acetyl-ß-(D)-glucosaminidase (NAG) activities, respectively. Neutrophil accumulation was unaffected by propolis, but NAG activity was reduced by the treatment at Day 14. The levels TGF-ß1 intra-implant increased progressively in both groups but were higher (40%) at Day 14 in the control implants. The pro-inflammatory levels of TNF-α peaked at Day 7 in the control implants, and at Day 14 in the propolis-treated group. Our results indicate that the anti-inflammatory/anti-angiogenic effects of propolis are associated with cytokine modulation.

14.
Artigo em Inglês | MEDLINE | ID: mdl-19690045

RESUMO

Propolis is a chemically complex resinous bee product which has gained worldwide popularity as a means to improve health condition and prevent diseases. The main constituents of an aqueous extract of a sample of green propolis from Southeast Brazil were shown by high performance liquid chromatography/mass spectroscopy/mass spectroscopy to be mono- and di-O-caffeoylquinic acids; phenylpropanoids known as important constituents of alcohol extracts of green propolis, such as artepillin C and drupanin were also detected in low amounts in the aqueous extract. The anti-inflammatory activity of this extract was evaluated by determination of wound healing parameters. Female Swiss mice were implanted subcutaneously with polyesther-polyurethane sponge discs to induce wound healing responses, and administered orally with green propolis (500 mg kg(-1)). At 4, 7 and 14 days post-implantation, the fibrovascular stroma and deposition of extracellular matrix were evaluated by histopathologic and morphometric analyses. In the propolis-treated group at Days 4 and 7 the inflammatory process in the sponge was reduced in comparison with control. A progressive increase in cell influx and collagen deposition was observed in control and propolis-treated groups during the whole period. However, these effects were attenuated in the propolis-treated group at Days 4 and 7, indicating that key factors of the wound healing process are modulated by propolis constituents.

15.
Inflammation ; 44(2): 580-591, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33034827

RESUMO

Recent data has signaled that in addition to its therapeutic indications as antidepressant and analgesic, amitriptyline (AM) exerts anti-inflammatory effects in humans and experimental animal models of acute inflammation. We tested the hypothesis that this compound could also modulate the chronic inflammatory process induced by synthetic matrix in mice. Polyether-polyurethane sponge disks were implanted subcutaneously in 9-week-old male C57BL/6 mice. The animals received by oral gavage 5.0 mg/kg of amitriptyline for seven consecutive days in two treatment regimens. In the first series, the treatment was initiated on the day of surgery and the implants removed at day 7 post-implantation. For the assessment of the effect of amitriptyline on chronic inflammation, the treatment was initiated 7 days post-implantation and the sponge discs removed 14 after implantation. The inflammatory markers evaluated, myeloperoxidase - MPO, nitrite content, IL-6, IFN-γ, TNF-α, CXCL1 and CCL2 levels, and NF-κB transcription factor activation were reduced in implants when the treatment began 7 days post-implantation (chronic inflammation). In contrast, only mast cell number, MPO activity and activation of NF-κB pathway decreased when the treatment began soon after implantation (sub-acute inflammation) in 7-day old implants. The anti-inflammatory effects of amitriptyline described here, extend its range of actions as a potential agent able to attenuate long-term inflammatory processes.


Assuntos
Amitriptilina/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Materiais Biocompatíveis/efeitos adversos , Inflamação/tratamento farmacológico , Poliuretanos/efeitos adversos , Animais , Biomarcadores/metabolismo , Western Blotting , Doença Crônica , Citocinas/metabolismo , Regulação para Baixo , Inflamação/diagnóstico , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Resultado do Tratamento
16.
Hypertens Pregnancy ; 39(3): 308-313, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32427499

RESUMO

OBJECTIVE: To assess the predictive abilities of serum and urinary cystatin C levels for glomerular lesions in pregnant women with pre-eclampsia. METHODS: In this study, kidney function markers were compared between38 pregnant women with pre-eclampsia and 22 healthy pregnant women. RESULTS: The serum and urine levels of cystatin C and urea were significantly higher in the pre-eclampsia group than in the control group. Receiver operating characteristic curve analysis demonstrated that the serum cystatin C level (91.7%) had a superior diagnostic accuracy for pre-eclampsia than the other markers. CONCLUSION: Serum cystatin C level maybe a significant marker of pre-eclampsia.


Assuntos
Cistatina C/metabolismo , Nefropatias/diagnóstico , Glomérulos Renais/patologia , Pré-Eclâmpsia/patologia , Adulto , Biomarcadores/sangue , Biomarcadores/urina , Creatinina/sangue , Creatinina/urina , Estudos Transversais , Cistatina C/sangue , Cistatina C/urina , Feminino , Taxa de Filtração Glomerular/fisiologia , Humanos , Nefropatias/etiologia , Nefropatias/metabolismo , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/urina , Gravidez , Ureia/sangue , Ureia/urina , Adulto Jovem
17.
Inflammation ; 43(4): 1259-1268, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32125592

RESUMO

Sodium butyrate (NaBu), a histone deacetylase inhibitor, has shown to exert beneficial actions attenuating inflammation in a number of intestinal and extra-intestinal diseases. However, the effects of NaBu on persistent inflammatory processes as in a response to implantation of foreign material have not been investigated. Synthetic matrix of polyether-polyurethane sponge was implanted in mice's subcutaneous layer of the dorsal region, and the animals were treated daily with oral administration of NaBu (100 mg/kg). After 7 days, the implants were removed and processed for assessment of inflammatory markers. Butyrate treatment caused a significant attenuation of neutrophil and macrophage infiltration in implants, which was reflected by the reduction of myeloperoxidase and N-acetyl-ß-D-glucosaminidase activities, respectively. Similar reduction was observed in intra-implants nitrite levels of NaBu-treated mice. NaBu treatment was also able to decrease mast cell recruitment/activation and the levels of CXCL1, CCL2, IL-6, TNF-ɑ, and TGF-ß1 in the implants but did not alter the levels of IL-10. In addition, NaBu administration decreased the concentration of proteins p65 and p50 in the nucleus as compared with the cytoplasm by western blot analysis. This result suggests that treatment with NaBu inhibited the NF-κB pathway. The circulating levels of TNF-ɑ and TGF-ß1 were also attenuated by NaBu. Persistent inflammation at sites of implanted devices very often impairs their functionality; therefore, our findings suggest that NaBu holds potential therapeutic value to control this adverse response to biomedical implants.


Assuntos
Ácido Butírico/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos/uso terapêutico , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Próteses e Implantes/efeitos adversos , Animais , Ácido Butírico/farmacologia , Regulação para Baixo/fisiologia , Éteres/administração & dosagem , Éteres/efeitos adversos , Antagonistas dos Receptores Histamínicos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poliuretanos/administração & dosagem , Poliuretanos/efeitos adversos
18.
Microvasc Res ; 78(3): 265-71, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19732781

RESUMO

The specific PDE4 inhibitor (rolipram) has been shown to attenuate excessive accumulation/activation of inflammatory cells and fibroblasts and cytokine production in several pathological conditions through cyclic nucleotide modulation. Here, using the murine sponge model to induce chronic subcutaneous inflammatory response and to elicit the formation of intraperitoneal adhesions we explored the hypothesis that rolipram would exert beneficial effects on decreasing key components of both processes (inflammatory cell recruitment, angiogenesis, and deposition of extracellular matrix component). Two doses of rolipram (0.2 or 2 mg/kg/day) were administered orally for 7 days in groups of mice bearing either subcutaneous or intraperitoneal polyether-polyurethane implants. Rolipram was effective in inhibiting angiogenesis as assessed by hemoglobin content and VEGF levels in subcutaneous implants (about 40% with both doses) but failed to exert this activity in intraperitoneal implants. Conversely, accumulation of neutrophils and macrophages determined by measuring myeloperoxidase (MPO) and N-acetylglucosaminidase (NAG) activities intraimplant, respectively, was attenuated only in intraperitoneal implants by the treatment. Levels of TNF-alpha and MCP-1 were also determined and rolipram at both doses decreased the production of both cytokines in intraperitoneal implants. The levels of MCP-1 in the subcutaneous implants were not affected by the treatment. Fibrosis was evaluated by determining the amount of collagen and production of TGF-beta1 intraimplant. Both parameters were attenuated by rolipram. These results have shown differential sensitivity of proliferating tissues to PDE4 inhibitor indicating that this agent may be used to target inflammatory angiogenesis selectively.


Assuntos
Inflamação/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Peritônio/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Rolipram/farmacologia , Administração Oral , Animais , Quimiocina CCL2/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Fibrose/patologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Neutrófilos/patologia , Peritônio/metabolismo , Peritônio/patologia , Tampões de Gaze Cirúrgicos , Aderências Teciduais/tratamento farmacológico , Aderências Teciduais/metabolismo , Aderências Teciduais/patologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Methods Mol Biol ; 467: 295-304, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19301679

RESUMO

The host response observed after the application of an appropriate stimulus, such as mechanical injury or injection of neoplastic or normal tissue implants, has allowed the cataloguing of a number of molecules and cells involved in the vascularization of normal repair or neoplastic tissue. Implantation of sponge matrices has been adopted as a model for the accurate quantification of angiogenic and fibrogenic responses as they may occur during wound healing in vivo. Such implants are particularly useful because they offer scope for modulating the environment within which angiogenesis occurs. A sponge implantation model has been optimised and adapted to characterise essential components and their roles in blood vessel formation in a variety of physiological and pathological conditions. As a direct consequence of advances in genetic manipulation, mouse models (i.e., knockouts, severe combined immunodeficient [SCID], nude) have provided resources to delineate the mechanisms regulating the healing associated with implants. Here, we outline the usefulness of the cannulated sponge implant model of angiogenesis and provide a detailed description of the methodology.


Assuntos
Modelos Biológicos , Neovascularização Fisiológica , Próteses e Implantes , Animais , Camundongos , Ratos
20.
Int J Biol Macromol ; 140: 653-660, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31442506

RESUMO

Alternagin-C (ALT-C), a disintegrin-like protein obtained from the venom of Bothrops alternatus, is able to modulate cellular behaviors such as adhesion, migration and proliferation, as well as the production of various growth factors via α2ß1 integrin, important processes during inflammation, angiogenesis and fibrogenesis, which although appear as distinct events, act concomitantly in several chronic inflammatory diseases. Our objective was to investigate the effects of ALT-C on components of the sponge-induced inflammatory response in balb/c mice. The polyester-polyurethane sponges were implanted in mice's subcutaneous layer of the dorsal region and daily injected with saline (control group) or ALT-C (10, 100 or 1000 ng). Nine days after implantation the implants were removed and processed. ALT-C inhibited the inflammatory response, observed through mast cell reduction, NAG-activity and also by the inhibition of TNF-α, CXCL-1 and CCL2/JE/MCP-1 cytokines. ALT-C was also able to reduce hemoglobin content, number of vessels and the concentrations of VEGF and FGF cytokines. Finally, at its highest dose (1000 ng), ALT-C increased all evaluated markers associated with fibrogenesis (collagen production and TGF-ß1 levels). All these factors reveal that ALT-C is a strong candidate to be exploited in the development of anti-inflammatory and anti-angiogenic therapies in chronic inflammatory processes.


Assuntos
Bothrops/metabolismo , Colágeno/metabolismo , Venenos de Crotalídeos/farmacologia , Desintegrinas/farmacologia , Inflamação/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Animais , Hemoglobinas/metabolismo , Inflamação/metabolismo , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA