Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(13): e2401625121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38507449

RESUMO

Molecular motors employ chemical energy to generate unidirectional mechanical output against a track while navigating a chaotic cellular environment, potential disorder on the track, and against Brownian motion. Nevertheless, decades of nanometer-precise optical studies suggest that myosin-5a, one of the prototypical molecular motors, takes uniform steps spanning 13 subunits (36 nm) along its F-actin track. Here, we use high-resolution interferometric scattering microscopy to reveal that myosin takes strides spanning 22 to 34 actin subunits, despite walking straight along the helical actin filament. We show that cumulative angular disorder in F-actin accounts for the observed proportion of each stride length, akin to crossing a river on variably spaced stepping stones. Electron microscopy revealed the structure of the stepping molecule. Our results indicate that both motor and track are soft materials that can adapt to function in complex cellular conditions.


Assuntos
Actinas , Miosina Tipo V , Actinas/química , Miosinas/química , Citoesqueleto de Actina/química , Movimento (Física) , Miosina Tipo V/química
2.
Mol Cell ; 46(2): 136-46, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22424775

RESUMO

The open promoter complex (OC) is a central intermediate during transcription initiation that contains a DNA bubble. Here, we employ single-molecule Förster resonance energy transfer experiments and Nano-Positioning System analysis to determine the three-dimensional architecture of a minimal OC consisting of promoter DNA, including a TATA box and an 11-nucleotide mismatched region around the transcription start site, TATA box-binding protein (TBP), RNA polymerase (Pol) II, and general transcription factor (TF)IIB and TFIIF. In this minimal OC, TATA-DNA and TBP reside above the Pol II cleft between clamp and protrusion domains. Downstream DNA is dynamically loaded into and unloaded from the Pol II cleft at a timescale of seconds. The TFIIB core domain is displaced from the Pol II wall, where it is located in the closed promoter complex. These results reveal large overall structural changes during the initiation-elongation transition, which are apparently accommodated by the intrinsic flexibility of TFIIB.


Assuntos
Modelos Genéticos , RNA Polimerase II/química , Proteínas de Saccharomyces cerevisiae/química , Transcrição Gênica , Transferência Ressonante de Energia de Fluorescência , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Sítio de Iniciação de Transcrição
3.
Proc Natl Acad Sci U S A ; 112(52): E7186-93, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26676576

RESUMO

To dissect the kinetics of structural transitions underlying the stepping cycle of kinesin-1 at physiological ATP, we used interferometric scattering microscopy to track the position of gold nanoparticles attached to individual motor domains in processively stepping dimers. Labeled heads resided stably at positions 16.4 nm apart, corresponding to a microtubule-bound state, and at a previously unseen intermediate position, corresponding to a tethered state. The chemical transitions underlying these structural transitions were identified by varying nucleotide conditions and carrying out parallel stopped-flow kinetics assays. At saturating ATP, kinesin-1 spends half of each stepping cycle with one head bound, specifying a structural state for each of two rate-limiting transitions. Analysis of stepping kinetics in varying nucleotides shows that ATP binding is required to properly enter the one-head-bound state, and hydrolysis is necessary to exit it at a physiological rate. These transitions differ from the standard model in which ATP binding drives full docking of the flexible neck linker domain of the motor. Thus, this work defines a consensus sequence of mechanochemical transitions that can be used to understand functional diversity across the kinesin superfamily.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Drosophila/química , Cinesinas/química , Trifosfato de Adenosina/metabolismo , Algoritmos , Animais , Proteínas de Drosophila/metabolismo , Hidrólise , Cinesinas/metabolismo , Cinética , Microscopia de Interferência , Modelos Químicos , Modelos Moleculares , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Estrutura Terciária de Proteína
4.
Biophys J ; 110(1): 214-7, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26745424

RESUMO

Current in vitro optical studies of microtubule dynamics tend to rely on fluorescent labeling of tubulin, with tracking accuracy thereby limited by the quantum yield of fluorophores and by photobleaching. Here, we demonstrate label-free tracking of microtubules with nanometer precision at kilohertz frame rates using interferometric scattering microscopy (iSCAT). With microtubules tethered to a glass substrate using low-density kinesin, we readily detect sequential 8 nm steps in the microtubule center of mass, characteristic of a single kinesin molecule moving a microtubule. iSCAT also permits dynamic changes in filament length to be measured with <5 nm precision. Using the arbitrarily long observation time enabled by label-free iSCAT imaging, we demonstrate continuous monitoring of microtubule disassembly over a 30 min period. The ability of iSCAT to track microtubules with nm precision together with its potential for label-free single protein detection and simultaneous single molecule fluorescence imaging represent a unique platform for novel approaches to studying microtubule dynamics.


Assuntos
Microscopia de Interferência/métodos , Microtúbulos/metabolismo , Animais , Microtúbulos/efeitos dos fármacos , Paclitaxel/farmacologia , Suínos , Fatores de Tempo
5.
Biophys J ; 110(5): 1202-1203, 2016 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-31265488

RESUMO

[This corrects the article DOI: 10.1016/j.bpj.2015.10.055.].

6.
bioRxiv ; 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37503193

RESUMO

Molecular motors employ chemical energy to generate unidirectional mechanical output against a track. By contrast to the majority of macroscopic machines, they need to navigate a chaotic cellular environment, potential disorder in the track and Brownian motion. Nevertheless, decades of nanometer-precise optical studies suggest that myosin-5a, one of the prototypical molecular motors, takes uniform steps spanning 13 subunits (36 nm) along its F-actin track. Here, we use high-resolution interferometric scattering (iSCAT) microscopy to reveal that myosin takes strides spanning 22 to 34 actin subunits, despite walking straight along the helical actin filament. We show that cumulative angular disorder in F-actin accounts for the observed proportion of each stride length, akin to crossing a river on variably-spaced stepping stones. Electron microscopy revealed the structure of the stepping molecule. Our results indicate that both motor and track are soft materials that can adapt to function in complex cellular conditions.

7.
BMJ Open ; 12(6): e060832, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35649599

RESUMO

OBJECTIVE: To evaluate the diagnostic performance and feasibility of rapid antigen testing for SARS-CoV-2 detection in low-income communities. DESIGN: We conducted a cross-sectional community-based diagnostic accuracy study. Community health workers, who were trained and supervised by medical technicians, performed rapid antigen tests on symptomatic individuals, and up to two additional household members in their households and diagnostic results were calibrated against the gold standard RT-PCR. SETTING: Low-income communities in Dhaka, Bangladesh. PARTICIPANTS: Between 19 May 2021 and 11 July 2021, 1240 nasal and saliva samples were collected from symptomatic individuals and 993 samples from additional household members (up to two from one household). RESULTS: The sensitivity of rapid antigen tests was 0.68 on nasal samples (95% CI 0.62 to 0.73) and 0.41 on saliva (95% CI 0.35 to 0.46), with specificity also higher on nasal samples (0.98, 95% CI 0.97 to 0.99) than saliva (0.87, 95% CI 0.85 to 0.90). Testing up to two additional household members increased sensitivity to 0.71 on nasal samples (95% CI 0.65 to 0.76), but reduced specificity (0.96, 95% CI 0.94 to 0.97). Sensitivity on saliva rose to 0.48 (95% CI 0.42 to 0.54) with two additional household members tested but remained lower than sensitivity on nasal samples. During the study period, testing in these low-income communities increased fourfold through the mobilisation of community health workers for sample collection. CONCLUSIONS: Rapid antigen testing on nasal swabs can be effectively performed by community health workers yielding equivalent sensitivity and specificity to the literature. Household testing by community health workers in low-resource settings is an inexpensive approach that can increase testing capacity, accessibility and the effectiveness of control measures through immediately actionable results.


Assuntos
COVID-19 , Agentes Comunitários de Saúde , Bangladesh , COVID-19/diagnóstico , COVID-19/epidemiologia , Estudos Transversais , Humanos , SARS-CoV-2
8.
Nat Commun ; 13(1): 2877, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618714

RESUMO

Diagnostics for COVID-19 detection are limited in many settings. Syndromic surveillance is often the only means to identify cases but lacks specificity. Rapid antigen testing is inexpensive and easy-to-deploy but can lack sensitivity. We examine how combining these approaches can improve surveillance for guiding interventions in low-income communities in Dhaka, Bangladesh. Rapid-antigen-testing with PCR validation was performed on 1172 symptomatically-identified individuals in their homes. Statistical models were fitted to predict PCR-status using rapid-antigen-test results, syndromic data, and their combination. Under contrasting epidemiological scenarios, the models' predictive and classification performance was evaluated. Models combining rapid-antigen-testing and syndromic data yielded equal-to-better performance to rapid-antigen-test-only models across all scenarios with their best performance in the epidemic growth scenario. These results show that drawing on complementary strengths across rapid diagnostics, improves COVID-19 detection, and reduces false-positive and -negative diagnoses to match local requirements; improvements achievable without additional expense, or changes for patients or practitioners.


Assuntos
COVID-19 , Epidemias , Bangladesh/epidemiologia , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , Modelos Estatísticos , Vigilância de Evento Sentinela
9.
Nat Methods ; 5(11): 965-71, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18849988

RESUMO

Very often, the positions of flexible domains within macromolecules as well as within macromolecular complexes cannot be determined by standard structural biology methods. To overcome this problem, we developed a method that uses probabilistic data analysis to combine single-molecule measurements with X-ray crystallography data. The method determines not only the most likely position of a fluorescent dye molecule attached to the domain but also the complete three-dimensional probability distribution depicting the experimental uncertainty. With this approach, single-pair fluorescence resonance energy transfer measurements can now be used as a quantitative tool for investigating the position and dynamics of flexible domains within macromolecular complexes. We applied this method to find the position of the 5' end of the nascent RNA exiting transcription elongation complexes of yeast (Saccharomyces cerevisiae) RNA polymerase II and studied the influence of transcription factor IIB on the position of the RNA.


Assuntos
Cristalografia por Raios X/métodos , Nanotecnologia/instrumentação , RNA Polimerase II/metabolismo , RNA/metabolismo , Fator de Transcrição TFIIB/metabolismo , Simulação por Computador , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Conformação Molecular , Ligação Proteica , RNA/biossíntese , RNA/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIB/química
10.
Nucleic Acids Res ; 37(17): 5803-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19620213

RESUMO

Crystallographic studies of the RNA polymerase II (Pol II) elongation complex (EC) revealed the locations of downstream DNA and the DNA-RNA hybrid, but not the course of the nontemplate DNA strand in the transcription bubble and the upstream DNA duplex. Here we used single-molecule Fluorescence Resonance Energy Transfer (smFRET) experiments to locate nontemplate and upstream DNA with our recently developed Nano Positioning System (NPS). In the resulting complete model of the Pol II EC, separation of the nontemplate from the template strand at position +2 involves interaction with fork loop 2. The nontemplate strand passes loop beta10-beta11 on the Pol II lobe, and then turns to the other side of the cleft above the rudder. The upstream DNA duplex exits at an approximately right angle from the incoming downstream DNA, and emanates from the cleft between the protrusion and clamp. Comparison with published data suggests that the architecture of the complete EC is conserved from bacteria to eukaryotes and that upstream DNA is relocated during the initiation-elongation transition.


Assuntos
DNA/química , Modelos Moleculares , RNA Polimerase II/química , Transcrição Gênica , Teorema de Bayes , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , RNA/química , Moldes Genéticos
11.
Proc Natl Acad Sci U S A ; 105(1): 135-40, 2008 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18162559

RESUMO

Single-pair fluorescence resonance energy transfer was used to track RNA exiting from RNA polymerase II (Pol II) in elongation complexes. Measuring the distance between the RNA 5' end and three known locations within the elongation complex allows us determine its position by means of triangulation. RNA leaves the polymerase active center cleft via the previously proposed exit tunnel and then disengages from the enzyme surface. When the RNA reaches lengths of 26 and 29 nt, its 5' end associates with Pol II at the base of the dock domain. Because the initiation factor TFIIB binds to the dock domain and exit tunnel, exiting RNA may prevent TFIIB reassociation during elongation. RNA further extends toward the linker connecting to the polymerase C-terminal repeat domain (CTD), which binds the 5'-capping enzyme and other RNA processing factors.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Fúngicas/química , RNA Polimerase II/química , RNA Mensageiro/química , Cisteína/química , DNA Polimerase II/química , Lasers , Modelos Moleculares , Modelos Estatísticos , Conformação Molecular , Mutagênese Sítio-Dirigida , Mutação , Oligonucleotídeos/química , Estrutura Terciária de Proteína , RNA/química , Fator de Transcrição TFIIB/química
12.
Phys Life Rev ; 6(4): 250-66, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20416848

RESUMO

Most of the essential cellular processes such as polymerisation reactions, gene expression and regulation are governed by mechanical processes. Controlled mechanical investigations of these processes are therefore required in order to take our understanding of molecular biology to the next level. Single-molecule manipulation and force spectroscopy have over the last 15 years been developed into extremely powerful techniques. Applying these techniques to the investigation of proteins and DNA molecules has led to a mechanistic understanding of protein function on the level of single molecules. As examples for DNA based molecular machines we will describe single-molecule experiments on RNA polymerases as well as on the packaging of DNA into a viral capsid-a process that is driven by one of the most powerful molecular motors.

13.
Science ; 360(6387): 423-427, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29700264

RESUMO

The cellular processes underpinning life are orchestrated by proteins and their interactions. The associated structural and dynamic heterogeneity, despite being key to function, poses a fundamental challenge to existing analytical and structural methodologies. We used interferometric scattering microscopy to quantify the mass of single biomolecules in solution with 2% sequence mass accuracy, up to 19-kilodalton resolution, and 1-kilodalton precision. We resolved oligomeric distributions at high dynamic range, detected small-molecule binding, and mass-imaged proteins with associated lipids and sugars. These capabilities enabled us to characterize the molecular dynamics of processes as diverse as glycoprotein cross-linking, amyloidogenic protein aggregation, and actin polymerization. Interferometric scattering mass spectrometry allows spatiotemporally resolved measurement of a broad range of biomolecular interactions, one molecule at a time.


Assuntos
Microscopia de Interferência/métodos , Polimerização , Agregação Patológica de Proteínas , Proteínas/química , Imagem Individual de Molécula/métodos , Actinas/química , Proteínas Amiloidogênicas/química , Humanos , Interferometria/métodos , Espectrometria de Massas/métodos , Análise Espaço-Temporal
14.
Elife ; 42015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25748137

RESUMO

Myosin 5a is a dual-headed molecular motor that transports cargo along actin filaments. By following the motion of individual heads with interferometric scattering microscopy at nm spatial and ms temporal precision we found that the detached head occupies a loosely fixed position to one side of actin from which it rebinds in a controlled manner while executing a step. Improving the spatial precision to the sub-nm regime provided evidence for an ångstrom-level structural transition in the motor domain associated with the power stroke. Simultaneous tracking of both heads revealed that consecutive steps follow identical paths to the same side of actin in a compass-like spinning motion demonstrating a symmetrical walking pattern. These results visualize many of the critical unknown aspects of the stepping mechanism of myosin 5 including head-head coordination, the origin of lever-arm motion and the spatiotemporal dynamics of the translocating head during individual steps.


Assuntos
Microscopia de Interferência/métodos , Movimento (Física) , Miosinas/química , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Fenômenos Biomecânicos , Fluorescência , Imageamento Tridimensional , Camundongos , Modelos Biológicos , Probabilidade , Estrutura Terciária de Proteína , Coelhos
15.
ACS Nano ; 7(12): 10662-70, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24251388

RESUMO

Supported lipid bilayers (SLB) are frequently used to study processes associated with or mediated by lipid membranes. The mechanism by which SLBs form is a matter of debate, largely due to the experimental difficulty associated with observing the adsorption and rupture of individual vesicles. Here, we used interferometric scattering microscopy (iSCAT) to directly visualize membrane formation from nanoscopic vesicles in real time. We observed a number of previously proposed phenomena such as vesicle adsorption, rupture, movement, and a wave-like bilayer spreading. By varying the vesicle size and the lipid-surface interaction strength, we rationalized and tuned the relative contributions of these phenomena to bilayer formation. Our results support a model where the interplay between bilayer edge tension and the overall interaction energy with the surface determine the mechanism of SLB formation. The unique combination of sensitivity, speed, and label-free imaging capability of iSCAT provides exciting prospects not only for investigations of SLB formation, but also for studies of assembly and disassembly processes on the nanoscale with previously unattainable accuracy and sensitivity.


Assuntos
Interferometria/métodos , Bicamadas Lipídicas/química , Adsorção , Difusão , Vidro , Luz , Lipídeos/química , Microscopia , Nanotecnologia , Óptica e Fotônica , Tamanho da Partícula , Fosfatidilcolinas/química , Espalhamento de Radiação , Propriedades de Superfície
16.
Biochemistry ; 45(29): 8751-9, 2006 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-16846218

RESUMO

Evidence for hetero-oligomerization has recently been provided for various G protein-coupled receptors. In this paper, we have studied the possibility that dopamine D(1) and D(2) receptors physically interact with each other. Human dopamine D(1) and D(2) receptors were fluorescently tagged with derivatives of green fluorescence protein and transiently coexpressed in the membrane of human embryonic kidney 293 cells. Using qualitative fluorescence spectroscopy, as well as quantitative Förster resonance energy transfer (FRET) analysis, performed in a single cell by confocal microscopy and fluorescence lifetime microscopy, we show that dopamine D(1) and D(2) receptors can form hetero-oligomers in the plasma membrane. The degree of receptor protein-protein interaction is significantly enhanced by concomitant addition of D(1) and D(2) receptor subtype-specific agonists. Our investigations extend biochemical and electrophysiological studies and give insights into the regulation and synergistic mode of operation of dopamine receptors.


Assuntos
Receptores de Dopamina D1/química , Receptores de Dopamina D2/química , Benzazepinas/metabolismo , Linhagem Celular , Dimerização , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/química , Humanos , Microscopia Confocal , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Espectrometria de Fluorescência , Espiperona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA