Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 151(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38174902

RESUMO

To gain insight into the transcription programs activated during the formation of Drosophila larval structures, we carried out single cell RNA sequencing during two periods of Drosophila embryogenesis: stages 10-12, when most organs are first specified and initiate morphological and physiological specialization; and stages 13-16, when organs achieve their final mature architectures and begin to function. Our data confirm previous findings with regards to functional specialization of some organs - the salivary gland and trachea - and clarify the embryonic functions of another - the plasmatocytes. We also identify two early developmental trajectories in germ cells and uncover a potential role for proteolysis during germline stem cell specialization. We identify the likely cell type of origin for key components of the Drosophila matrisome and several commonly used Drosophila embryonic cell culture lines. Finally, we compare our findings with other recent related studies and with other modalities for identifying tissue-specific gene expression patterns. These data provide a useful community resource for identifying many new players in tissue-specific morphogenesis and functional specialization of developing organs.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Transcriptoma/genética , Organogênese , Proteínas de Drosophila/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento
2.
Traffic ; 21(9): 560-577, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32613751

RESUMO

Specialization of many cells, including the acinar cells of the salivary glands and pancreas, milk-producing cells of mammary glands, mucus-secreting goblet cells, antibody-producing plasma cells, and cells that generate the dense extracellular matrices of bone and cartilage, requires scaling up both secretory machinery and cell-type specific secretory cargo. Using tissue-specific genome-scale analyses, we determine how increases in secretory capacity are coordinated with increases in secretory load in the Drosophila salivary gland (SG), an ideal model for gaining mechanistic insight into the functional specialization of secretory organs. Our findings show that CrebA, a bZIP transcription factor, directly binds genes encoding the core secretory machinery, including protein components of the signal recognition particle and receptor, ER cargo translocators, Cop I and Cop II vesicles, as well as the structural proteins and enzymes of these organelles. CrebA directly binds a subset of SG cargo genes and CrebA binds and boosts expression of Sage, a SG-specific transcription factor essential for cargo expression. To further enhance secretory output, CrebA binds and activates Xbp1 and Tudor-SN. Thus, CrebA directly upregulates the machinery of secretion and additional factors to increase overall secretory capacity in professional secretory cells; concomitant increases in cargo are achieved both directly and indirectly.


Assuntos
Proteínas de Drosophila , Animais , Proteína A de Ligação a Elemento de Resposta do AMP Cíclico , Drosophila , Proteínas de Drosophila/genética , Glândulas Salivares , Fatores de Transcrição
3.
Dev Biol ; 419(2): 273-284, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27618755

RESUMO

Determining how organs attain precise positioning within an organism is a crucial facet of developmental biology. The Fox family winged-helix transcription factors are known to play key roles in development of multiple organs. Drosophila FoxL1 (aka Fd64A) is dynamically expressed in embryos but its function is completely uncharacterized. FoxL1 is expressed in a single group of body wall - muscles in the 2nd and 3rd thoracic segments, in homologous abdominal muscles at earlier stages, and in the hindgut mesoderm from early through late embryogenesis. We show that FoxL1 expression in T2 and T3 is in VIS5, which is not a single muscle spanning the entire thorax, as previously published, but is, instead, three individual muscles, each spanning a single thoracic segment. We generate mutations in foxL1 and show that, surprisingly, none of the tissues that express FoxL1 are affected by its loss. Instead, loss of foxL1 results in defects in salivary gland positioning and morphology, as well as defects in the migration of hemocytes, germ cells and Malpighian tubules. We also show that FoxL1-dependent expression of secreted Sema2a in T3 VIS5 is required for normal salivary gland positioning. Altogether, these findings suggest that Drosophila FoxL1 functions like its mammalian counterpart in non-autonomously orchestrating the behaviors of surrounding tissues.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Fatores de Transcrição Forkhead/fisiologia , Organogênese/fisiologia , Sequência de Aminoácidos , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Embrião não Mamífero/ultraestrutura , Células Germinativas Embrionárias/citologia , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Hemócitos/citologia , Túbulos de Malpighi/embriologia , Músculos/embriologia , Músculos/ultraestrutura , Especificidade de Órgãos , Organogênese/genética , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Glândulas Salivares/embriologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Tórax/embriologia , Tórax/ultraestrutura
4.
Dev Biol ; 409(1): 234-250, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26477561

RESUMO

Transcription factors affect spatiotemporal patterns of gene expression often regulating multiple aspects of tissue morphogenesis, including cell-type specification, cell proliferation, cell death, cell polarity, cell shape, cell arrangement and cell migration. In this work, we describe a distinct role for Ribbon (Rib) in controlling cell shape/volume increases during elongation of the Drosophila salivary gland (SG). Notably, the morphogenetic changes in rib mutants occurred without effects on general SG cell attributes such as specification, proliferation and apoptosis. Moreover, the changes in cell shape/volume in rib mutants occurred without compromising epithelial-specific morphological attributes such as apicobasal polarity and junctional integrity. To identify the genes regulated by Rib, we performed ChIP-seq analysis in embryos driving expression of GFP-tagged Rib specifically in the SGs. To learn if the Rib binding sites identified in the ChIP-seq analysis were linked to changes in gene expression, we performed microarray analysis comparing RNA samples from age-matched wild-type and rib null embryos. From the superposed ChIP-seq and microarray gene expression data, we identified 60 genomic sites bound by Rib likely to regulate SG-specific gene expression. We confirmed several of the identified Rib targets by qRT-pCR and/or in situ hybridization. Our results indicate that Rib regulates cell growth and tissue shape in the Drosophila salivary gland via a diverse array of targets through both transcriptional activation and repression. Furthermore, our results suggest that autoregulation of rib expression may be a key component of the SG morphogenetic gene network.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , Morfogênese/genética , Proteínas Repressoras/metabolismo , Glândulas Salivares/embriologia , Ativação Transcricional/genética , Animais , Apoptose/genética , Sequência de Bases , Sítios de Ligação , Divisão Celular/genética , Polaridade Celular/genética , Imunoprecipitação da Cromatina , Análise por Conglomerados , Sequência Consenso , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Embrião não Mamífero/citologia , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Modelos Biológicos , Dados de Sequência Molecular , Mutação/genética , Motivos de Nucleotídeos/genética , Análise de Sequência com Séries de Oligonucleotídeos , Tamanho do Órgão , Ligação Proteica , Reprodutibilidade dos Testes , Glândulas Salivares/citologia , Glândulas Salivares/metabolismo , Análise de Sequência de RNA
5.
J Cell Sci ; 128(19): 3533-42, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26345366

RESUMO

G-protein-coupled receptors (GPCRs) are the largest family of receptors in many organisms, including worms, mice and humans. GPCRs are seven-transmembrane pass proteins that are activated by binding a stimulus (or ligand) in the extracellular space and then transduce that information to the inside of the cell through conformational changes. The conformational changes activate heterotrimeric G-proteins, which execute the downstream signaling pathways through the recruitment and activation of cellular enzymes. The highly specific ligand-GPCR interaction prompts an efficient cellular response, which is vital for the health of the cell and organism. In this Commentary, we review general features of GPCR signaling and then focus on the Drosophila GPCRs, which are not as well-characterized as their worm and mammalian counterparts. We discuss findings that the Drosophila odorant and gustatory receptors are not bona fide GPCRs as is the case for their mammalian counterparts. We also present here a phylogenetic analysis of the bona fide Drosophila GPCRs that suggest potential roles for several family members. Finally, we discuss recently discovered roles of GPCRs in Drosophila embryogenesis, a field we expect will uncover many previously unappreciated functions for GPCRs.


Assuntos
Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Animais , Arrestinas/genética , Drosophila , Humanos , Camundongos , Modelos Biológicos , Receptores Acoplados a Proteínas G/genética , Relação Estrutura-Atividade
6.
Development ; 141(9): 1950-60, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24718992

RESUMO

Apical and basolateral determinants specify and maintain membrane domains in epithelia. Here, we identify new roles for two apical surface proteins - Cadherin 99C (Cad99C) and Stranded at Second (SAS) - in conferring apical character in Drosophila tubular epithelia. Cad99C, the Drosophila ortholog of human Usher protocadherin PCDH15, is expressed in several embryonic tubular epithelial structures. Through loss-of-function and overexpression studies, we show that Cad99C is required to regulate cell rearrangement during salivary tube elongation. We further show that overexpression of either Cad99C or SAS causes a dramatic increase in apical membrane at the expense of other membrane domains, and that both proteins can do this independently of each other and independently of mislocalization of the apical determinant Crumbs (Crb). Overexpression of Cad99C or SAS results in similar, but distinct effects, suggesting both shared and unique roles for these proteins in conferring apical identity.


Assuntos
Caderinas/metabolismo , Polaridade Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Células Epiteliais/citologia , Epitélio/embriologia , Epitélio/metabolismo , Animais , Caderinas/química , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/ultraestrutura , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Modelos Biológicos , Mutação/genética , Fenótipo , Estrutura Terciária de Proteína , Transporte Proteico , Glândulas Salivares/citologia , Glândulas Salivares/metabolismo , Glândulas Salivares/ultraestrutura , Relação Estrutura-Atividade , Proteínas rab de Ligação ao GTP/metabolismo
7.
Development ; 140(10): 2160-71, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23578928

RESUMO

FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Ligação a RNA/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cromossomos/ultraestrutura , Cruzamentos Genéticos , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Fatores de Transcrição Forkhead , Perfilação da Expressão Gênica , Hibridização In Situ , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Glândulas Salivares/metabolismo , Proteínas e Peptídeos Salivares/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Development ; 140(9): 1981-93, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23536567

RESUMO

Members of the ADAMTS family of secreted metalloproteases play crucial roles in modulating the extracellular matrix (ECM) in development and disease. Here, we show that ADAMTS-A, the Drosophila ortholog of human ADAMTS 9 and ADAMTS 20, and of C. elegans GON-1, is required for cell migration during embryogenesis. AdamTS-A is expressed in multiple migratory cell types, including hemocytes, caudal visceral mesoderm (CVM), the visceral branch of the trachea (VBs) and the secretory portion of the salivary gland (SG). Loss of AdamTS-A causes defects in germ cell, CVM and VB migration and, depending on the tissue, AdamTS-A functions both autonomously and non-autonomously. In the highly polarized collective of the SG epithelium, loss of AdamTS-A causes apical surface irregularities and cell elongation defects. We provide evidence that ADAMTS-A is secreted into the SG lumen where it functions to release cells from the apical ECM, consistent with the defects observed in AdamTS-A mutant SGs. We show that loss of the apically localized protocadherin Cad99C rescues the SG defects, suggesting that Cad99C serves as a link between the SG apical membrane and the secreted apical ECM component(s) cleaved by ADAMTS-A. Our analysis of AdamTS-A function in the SG suggests a novel role for ADAMTS proteins in detaching cells from the apical ECM, facilitating tube elongation during collective cell migration.


Assuntos
Proteínas ADAM/metabolismo , Movimento Celular , Drosophila melanogaster/enzimologia , Genes de Insetos , Proteínas ADAM/classificação , Proteínas ADAM/genética , Animais , Caderinas/genética , Caderinas/metabolismo , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Polaridade Celular , Forma Celular , Drosophila melanogaster/classificação , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Embrião não Mamífero/citologia , Embrião não Mamífero/enzimologia , Desenvolvimento Embrionário , Matriz Extracelular/enzimologia , Hemócitos/enzimologia , Imuno-Histoquímica , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/enzimologia , Fenótipo , Filogenia , Glândulas Salivares/citologia , Glândulas Salivares/enzimologia , Traqueia/embriologia , Traqueia/enzimologia
9.
Traffic ; 14(4): 382-98, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23279168

RESUMO

CREB3 proteins comprise a set of ER-localized bZip transcription factors defined by the presence of a transmembrane domain. They are regulated by inter-compartmental transport, Golgi cleavage and nuclear transport where they promote appropriate transcriptional responses. Although CREB3 proteins play key roles in differentiation, inflammation and metabolism, a general framework relating their defining features to these diverse activities is lacking. We identify unique features of CREB3 organization including the ATB domain, which we show it is essential for transcriptional activity. This domain is absent in all other human bZip factors, but conserved in Drosophila CREBA, which controls secretory pathway genes (SPGs). Furthermore, each of the five human CREB3 factors was capable of activating SPGs in Drosophila, dependent upon the ATB domain. Expression of the CREB3 protein, CREB-H, in 293 cells, upregulated genes involved in secretory capacity, extracellular matrix formation and lipid metabolism and increased secretion of specific cargos. In liver cells, which normally express CREB-H, the active form specifically induced secretion of apolipoproteins, including ApoA-IV, ApoAI, consistent with data implicating CREB-H in metabolic homeostasis. Based on these data and other recent studies, we propose a general role for the CREB3 family in regulating secretory capacity, with particular relevance to specialized cargos.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Via Secretória/genética , Apolipoproteínas/metabolismo , Membrana Celular/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína A de Ligação a Elemento de Resposta do AMP Cíclico/química , Proteína A de Ligação a Elemento de Resposta do AMP Cíclico/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Matriz Extracelular/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Metabolismo dos Lipídeos , Estrutura Terciária de Proteína , Deleção de Sequência , Transcrição Gênica
10.
Dev Dyn ; 241(1): 119-35, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22083894

RESUMO

Epithelial tubular organs are essential for life in higher organisms and include the pancreas and other secretory organs that function as biological factories for the synthesis and delivery of secreted enzymes, hormones, and nutrients essential for tissue homeostasis and viability. The lungs, which are necessary for gas exchange, vocalization, and maintaining blood pH, are organized as highly branched tubular epithelia. Tubular organs include arteries, veins, and lymphatics, high-speed passageways for delivery and uptake of nutrients, liquids, gases, and immune cells. The kidneys and components of the reproductive system are also epithelial tubes. Both the heart and central nervous system of many vertebrates begin as epithelial tubes. Thus, it is not surprising that defects in tube formation and maintenance underlie many human diseases. Accordingly, a thorough understanding how tubes form and are maintained is essential to developing better diagnostics and therapeutics. Among the best-characterized tubular organs are the Drosophila salivary gland and trachea, organs whose relative simplicity have allowed for in depth analysis of gene function, yielding key mechanistic insight into tube initiation, remodeling and maintenance. Here, we review our current understanding of salivary gland and trachea formation - highlighting recent discoveries into how these organs attain their final form and function.


Assuntos
Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/embriologia , Epitélio/anatomia & histologia , Epitélio/embriologia , Organogênese/fisiologia , Animais , Movimento Celular/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Glândulas Salivares/anatomia & histologia , Glândulas Salivares/embriologia , Transdução de Sinais/fisiologia
11.
Dev Biol ; 360(1): 160-72, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21963537

RESUMO

The Drosophila trachea is a branched tubular epithelia that transports oxygen and other gases. trachealess (trh), which encodes a bHLH-PAS transcription factor, is among the first genes to be expressed in the cells that will form the trachea. In the absence of trh, tracheal cells fail to invaginate to form tubes and remain on the embryo surface. Expression of many tracheal-specific genes depends on trh, but all of the known targets have relatively minor phenotypes compared to loss of trh, suggesting that there are additional targets. To identify uncharacterized transcriptional targets of Trh and to further understand the role of Trh in embryonic tracheal formation, we performed an in situ hybridization screen using a library of ~100 tracheal-expressed genes identified by the Berkeley Drosophila Genome Project (BDGP). Surprisingly, expression of every tracheal gene we tested was dependent on Trh, suggesting a major role for Trh in activation and maintenance of tracheal gene expression. A re-examination of the interdependence of the known early-expressed transcription factors, including trh, ventral veinless (vvl) and knirps/knirps-related (kni/knrl), suggests a new model for how gene expression is controlled in the trachea, with trh regulating expression of vvl and kni, but not vice versa. A pilot screen for the targets of Vvl and Kni/Knrl revealed that Vvl and Kni have only minor roles compared to Trh. Finally, genome-wide microarray experiments identified additional Trh targets and revealed that a variety of biological processes are affected by the loss of trh.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Genes de Insetos , Traqueia/embriologia , Fatores de Transcrição/genética , Processamento Alternativo , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Estudo de Associação Genômica Ampla , Homeostase , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Homologia de Sequência de Aminoácidos , Distribuição Tecidual , Traqueia/metabolismo , Fatores de Transcrição/metabolismo
12.
PLoS Genet ; 5(11): e1000746, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19956736

RESUMO

Epithelial tubes are the functional units of many organs, and proper tube geometry is crucial for organ function. Here, we characterize serrano (sano), a novel cytoplasmic protein that is apically enriched in several tube-forming epithelia in Drosophila, including the tracheal system. Loss of sano results in elongated tracheae, whereas Sano overexpression causes shortened tracheae with reduced apical boundaries. Sano overexpression during larval and pupal stages causes planar cell polarity (PCP) defects in several adult tissues. In Sano-overexpressing pupal wing cells, core PCP proteins are mislocalized and prehairs are misoriented; sano loss or overexpression in the eye disrupts ommatidial polarity and rotation. Importantly, Sano binds the PCP regulator Dishevelled (Dsh), and loss or ectopic expression of many known PCP proteins in the trachea gives rise to similar defects observed with loss or gain of sano, revealing a previously unrecognized role for PCP pathway components in tube size control.


Assuntos
Proteínas de Transporte/fisiologia , Polaridade Celular/genética , Proteínas de Drosophila/fisiologia , Traqueia/crescimento & desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Transporte/metabolismo , Citoplasma , Proteínas Desgrenhadas , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Embrião não Mamífero , Epitélio , Expressão Gênica , Fenótipo , Fosfoproteínas/metabolismo , Ligação Proteica
13.
J Vis Exp ; (181)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35311819

RESUMO

RNA interference has been a heavily utilized tool for reverse genetic analysis for two decades. In adult mosquitoes, double-stranded RNA (dsRNA) administration has been accomplished primarily via injection, which requires significant time and is not suitable for field applications. To overcome these limitations, here we present a more efficient method for robust activation of RNAi by oral delivery of dsRNA to adult Anopheles gambiae. Long dsRNAs were produced in Escherichia coli strain HT115 (DE3), and a concentrated suspension of heat-killed dsRNA-containing bacteria in 10% sucrose was offered on cotton balls ad-libitum to adult mosquitoes. Cotton balls were replaced every 2 days for the duration of the treatment. Use of this method to target doublesex (a gene involved in sex differentiation) or fork head (which encodes a salivary gland transcription factor) resulted in reduced target gene expression and/or protein immunofluorescence signal, as measured by quantitative Real-Time PCR (qRT-PCR) or fluorescence confocal microscopy, respectively. Defects in salivary gland morphology were also observed. This highly flexible, user-friendly, low-cost, time-efficient method of dsRNA delivery could be broadly applicable to target genes important for insect vector physiology and beyond.


Assuntos
Anopheles , Animais , Anopheles/genética , Escherichia coli/genética , Mosquitos Vetores/genética , Interferência de RNA , RNA de Cadeia Dupla/genética
14.
J Cell Biol ; 221(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35195669

RESUMO

Cell growth is well defined for late (postembryonic) stages of development, but evidence for early (embryonic) cell growth during postmitotic morphogenesis is limited. Here, we report early cell growth as a key characteristic of tubulogenesis in the Drosophila embryonic salivary gland (SG) and trachea. A BTB/POZ domain nuclear factor, Ribbon (Rib), mediates this early cell growth. Rib binds the transcription start site of nearly every SG-expressed ribosomal protein gene (RPG) and is required for full expression of all RPGs tested. Rib binding to RPG promoters in vitro is weak and not sequence specific, suggesting that specificity is achieved through cofactor interactions. Accordingly, we demonstrate Rib's ability to physically interact with each of the three known regulators of RPG transcription. Surprisingly, Rib-dependent early cell growth in another tubular organ, the embryonic trachea, is not mediated by direct RPG transcription. These findings support a model of early cell growth customized by transcriptional regulatory networks to coordinate organ form and function.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regiões Promotoras Genéticas , Proteínas Ribossômicas/genética , Glândulas Salivares/metabolismo , Animais , Proteínas de Drosophila/genética , Sítio de Iniciação de Transcrição
15.
Nat Commun ; 13(1): 2949, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618711

RESUMO

In mammals, the serine protease plasmin degrades extracellular proteins during blood clot removal, tissue remodeling, and cell migration. The zymogen plasminogen is activated into plasmin by two serine proteases: tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), a process regulated by plasminogen activator inhibitor 1 (PAI-1), a serine protease inhibitor that specifically inhibits tPA and uPA. Plasmodium gametes and sporozoites use tPA and uPA to activate plasminogen and parasite-bound plasmin degrades extracellular matrices, facilitating parasite motility in the mosquito and the mammalian host. Furthermore, inhibition of plasminogen activation by PAI-1 strongly blocks infection in both hosts. To block parasite utilization of plasmin, we engineered Anopheles stephensi transgenic mosquitoes constitutively secreting human PAI-1 (huPAI-1) in the midgut lumen, in the saliva, or both. Mosquitoes expressing huPAI-1 strongly reduced rodent and human Plasmodium parasite transmission to mosquitoes, showing that co-opting plasmin for mosquito infection is a conserved mechanism among Plasmodium species. huPAI-1 expression in saliva induced salivary gland deformation which affects sporozoite invasion and P. berghei transmission to mice, resulting in significant levels of protection from malaria. Targeting the interaction of malaria parasites with the fibrinolytic system using genetically engineered mosquitoes could be developed as an intervention to control malaria transmission.


Assuntos
Anopheles , Malária , Plasmodium , Animais , Animais Geneticamente Modificados , Anopheles/parasitologia , Fibrinolisina , Humanos , Malária/parasitologia , Mamíferos , Camundongos , Mosquitos Vetores/genética , Plasminogênio , Inibidor 1 de Ativador de Plasminogênio/genética , Plasmodium/fisiologia , Esporozoítos
16.
Dev Biol ; 341(1): 34-55, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19778532

RESUMO

Epithelial tubes are a fundamental tissue across the metazoan phyla and provide an essential functional component of many of the major organs. Recent work in flies and mammals has begun to elucidate the cellular mechanisms driving the formation, elongation, and branching morphogenesis of epithelial tubes during development. Both forward and reverse genetic techniques have begun to identify critical molecular regulators for these processes and have revealed the conserved role of key pathways in regulating the growth and elaboration of tubular networks. In this review, we discuss the developmental programs driving the formation of branched epithelial networks, with specific emphasis on the trachea and salivary gland of Drosophila melanogaster and the mammalian lung, mammary gland, kidney, and salivary gland. We both highlight similarities in the development of these organs and attempt to identify tissue and organism specific strategies. Finally, we briefly consider how our understanding of the regulation of proliferation, apicobasal polarity, and epithelial motility during branching morphogenesis can be applied to understand the pathologic dysregulation of these same processes during metastatic cancer progression.


Assuntos
Epitélio/crescimento & desenvolvimento , Morfogênese , Organogênese , Animais , Padronização Corporal
17.
Dev Dyn ; 239(6): 1609-21, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20503358

RESUMO

In an EMS screen for mutations disrupting tracheal development, we identified new alleles of the dalmation (dmt) gene, which had previously been shown to affect peripheral nervous system (PNS) development. Here, we demonstrate that dmt loss results in programmed cell death, disrupting PNS patterning and leading to large gaps in the salivary duct and trachea. Dmt loss results in increased expression of the proapoptotic regulator genes head involution defective (hid) and reaper (rpr), and deletion of these genes or tissue-specific expression of the baculoviral apoptotic inhibitor P35 rescues the dmt defects. dmt is also required to protect cells from irradiation induced expression of hid and rpr during the irradiation resistant stage, which begins as cells become irreversibly committed to their final fates. Thus, we propose that Dmt keeps cells alive by blocking activation of hid and rpr as cells become irreversibly committed.


Assuntos
Apoptose/genética , Apoptose/fisiologia , Alelos , Animais , Embrião não Mamífero
18.
Curr Top Dev Biol ; 143: 1-36, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33820619

RESUMO

Secretory organs are critical for organismal survival. Yet, the transcriptional regulatory mechanisms governing their development and maintenance remain unclear for most model secretory organs. The Drosophila embryonic salivary gland (SG) remedies this deficiency as one of the few organs wherein direct connections from the expression of the early patterning genes to cell specification to organ architecture and functional specialization can be made. Few other models of secretion can be accorded this distinction. Studies from the past three decades have made enormous strides in parsing out the roles of distinct transcription factors (TFs) that direct major steps in furnishing this secretory organ. In the first step of specifying the salivary gland, the activity of the Hox factors Sex combs reduced, Extradenticle, and Homothorax activate expression of fork head (fkh), sage, and CrebA, which code for the major suite of TFs that carry forward the task of organ building and maintenance. Then, in the second key step of building the SG, the program for cell fate maintenance and morphogenesis is deployed. Fkh maintains the secretory cell fate by regulating its own expression and that of sage and CrebA. Fkh and Sage maintain secretory cell viability by actively blocking apoptotic cell death. Fkh, along with two other TFs, Hkb and Rib, also coordinates organ morphogenesis, transforming two plates of precursor cells on the embryo surface into elongated internalized epithelial tubes. Acquisition of functional specialization, the third key step, is mediated by CrebA and Fkh working in concert with Sage and yet another TF, Sens. CrebA directly upregulates expression of all of the components of the secretory machinery as well as other genes (e.g., Xbp1) necessary for managing the physiological stress that inexorably accompanies high secretory load. Secretory cargo specificity is controlled by Sage and Sens in collaboration with Fkh. Investigations have also uncovered roles for various signaling pathways, e.g., Dpp signaling, EGF signaling, GPCR signaling, and cytoskeletal signaling, and their interactions within the gene regulatory networks that specify, build, and specialize the SG. Collectively, studies of the SG have expanded our knowledge of secretory dynamics, cell polarity, and cytoskeletal mechanics in the context of organ development and function. Notably, the embryonic SG has made the singular contribution as a model system that revealed the core function of CrebA in scaling up secretory capacity, thus, serving as the pioneer system in which the conserved roles of the mammalian Creb3/3L-family orthologues were first discovered.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Mamíferos/metabolismo , Proteínas Nucleares/genética , Glândulas Salivares/metabolismo
19.
Cell Rep ; 34(9): 108799, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33657369

RESUMO

The Tre1 G-protein coupled receptor (GPCR) was discovered to be required for Drosophila germ cell (GC) coalescence almost two decades ago, yet the molecular events both upstream and downstream of Tre1 activation remain poorly understood. To gain insight into these events, we describe a bona fide null allele and both untagged and tagged versions of Tre1. We find that the primary defect with complete Tre1 loss is the failure of GCs to properly navigate, with GC mis-migration occurring from early stages. We find that Tre1 localizes with F-actin at the migration front, along with PI(4,5)P2; dPIP5K, an enzyme that generates PI(4,5)P2; and dWIP, a protein that binds activated Wiskott-Aldrich syndrome protein (WASP), which stimulates F-actin polymerization. We show that Tre1 is required for polarized accumulation of F-actin, PI(4,5)P2, and dPIP5K. Smoothened also localizes with F-actin at the migration front, and Hh, through Smo, increases levels of Tre1 at the plasma membrane and Tre1's association with dPIP5K.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Germinativas Embrionárias/metabolismo , Proteínas Hedgehog/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Citoesqueleto de Actina/genética , Animais , Animais Geneticamente Modificados , Movimento Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Proteínas Hedgehog/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Fatores de Tempo , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
20.
Genetics ; 219(2)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34173831

RESUMO

Filamins are highly conserved actin-crosslinking proteins that regulate organization of the actin cytoskeleton. As key components of versatile signaling scaffolds, filamins are implicated in developmental anomalies and cancer. Multiple isoforms of filamins exist, raising the possibility of distinct functions for each isoform during development and in disease. Here, we provide an initial characterization of jitterbug (jbug), which encodes one of the two filamin-type proteins in Drosophila. We generate Jbug antiserum that recognizes all of the spliced forms and reveals differential expression of different Jbug isoforms during development, and a significant maternal contribution of Jbug protein. To reveal the function of Jbug isoforms, we create new genetic tools, including a null allele that deletes all isoforms, hypomorphic alleles that affect only a subset, and UAS lines for Gal4-driven expression of the major isoforms. Using these tools, we demonstrate that Jbug is required for viability and that specific isoforms are required in the formation of actin-rich protrusions including thoracic bristles in adults and ventral denticles in the embryo. We also show that specific isoforms of Jbug show differential localization within epithelia and that maternal and zygotic loss of jbug disrupts Crumbs (Crb) localization in several epithelial cell types.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Regulação da Expressão Gênica no Desenvolvimento , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Morfogênese , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA