Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 35(8): 1218-1232, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39081220

RESUMO

Minimal immunogen vaccines are being developed to focus antibody responses against otherwise challenging targets, including human immunodeficiency virus (HIV), but multimerization of the minimal peptide immunogen on a carrier platform is required for activity. Star copolymers comprising multiple hydrophilic polymer chains ("arms") radiating from a central dendrimer unit ("core") were recently reported to be an effective platform for arraying minimal immunogens for inducing antibody responses in mice and primates. However, the impact of different parameters of the star copolymer (e.g., minimal immunogen density and hydrodynamic size) on antibody responses and the optimal synthetic route for controlling those parameters remains to be fully explored. We synthesized a library of star copolymers composed of poly[N-(2-hydroxypropyl)methacrylamide] hydrophilic arms extending from poly(amidoamine) dendrimer cores with the aim of identifying the optimal composition for use as minimal immunogen vaccines. Our results show that the length of the polymer arms has a crucial impact on the star copolymer hydrodynamic size and is precisely tunable over a range of 20-50 nm diameter, while the dendrimer generation affects the maximum number of arms (and therefore minimal immunogens) that can be attached to the surface of the dendrimer. In addition, high-resolution images of selected star copolymer taken by a custom-modified environmental scanning electron microscope enabled the acquisition of high-resolution images, providing new insights into the star copolymer structure. Finally, in vivo studies assessing a star copolymer vaccine comprising an HIV minimal immunogen showed the criticality of polymer arm length in promoting antibody responses and highlighting the importance of composition tunability to yield the desired biological effect.


Assuntos
Dendrímeros , Animais , Dendrímeros/química , Camundongos , Polímeros/química , Portadores de Fármacos/química , Vacinas/imunologia , Vacinas/química , Vacinas/administração & dosagem , Humanos , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/química , Vacinas contra a AIDS/administração & dosagem , Poliaminas
2.
Sci Rep ; 14(1): 3847, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360883

RESUMO

In this work, we present the synthesis and evaluation of magnetic resonance (MR) properties of novel phosphorus/iron-containing probes for dual 31P and 1H MR imaging and spectroscopy (MRI and MRS). The presented probes are composed of biocompatible semitelechelic and multivalent phospho-polymers based on poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC) coordinated with small paramagnetic Fe3+ ions or superparamagnetic maghemite (γ-Fe2O3) nanoparticles via deferoxamine group linked to the end or along the polymer chains. All probes provided very short 1H T1 and T2 relaxation times even at low iron concentrations. The presence of iron had a significant impact on the shortening of 31P relaxation, with the effect being more pronounced for probes based on γ-Fe2O3 and multivalent polymer. While the water-soluble probe having one Fe3+ ion per polymer chain was satisfactorily visualized by both 31P-MRS and 31P-MRI, the probe with multiple Fe3+ ions could only be detected by 31P-MRS, and the probes consisting of γ-Fe2O3 nanoparticles could not be imaged by either technique due to their ultra-short 31P relaxations. In this proof-of-principle study performed on phantoms at a clinically relevant magnetic fields, we demonstrated how the different forms and concentrations of iron affect both the 1H MR signal of the surrounding water molecules and the 31P MR signal of the phospho-polymer probe. Thus, this double contrast can be exploited to simultaneously visualize body anatomy and monitor probe biodistribution.


Assuntos
Imageamento por Ressonância Magnética , Polímeros , Distribuição Tecidual , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Ferro , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA