Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
PLoS Pathog ; 19(9): e1011636, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37669276

RESUMO

The covalent modification of bacterial (lipo)polysaccharides with discrete substituents may impact their biosynthesis, export and/or biological activity. Whether mycobacteria use a similar strategy to control the biogenesis of its cell envelope polysaccharides and modulate their interaction with the host during infection is unknown despite the report of a number of tailoring substituents modifying the structure of these glycans. Here, we show that discrete succinyl substituents strategically positioned on Mycobacterium tuberculosis (Mtb) lipoarabinomannan govern the mannose-capping of this lipoglycan and, thus, much of the biological activity of the entire molecule. We further show that the absence of succinyl substituents on the two main cell envelope glycans of Mtb, arabinogalactan and lipoarabinomannan, leads to a significant increase of pro-inflammatory cytokines and chemokines in infected murine and human macrophages. Collectively, our results validate polysaccharide succinylation as a critical mechanism by which Mtb controls inflammation.


Assuntos
Lipopolissacarídeos , Tuberculose , Humanos , Animais , Camundongos , Manose , Inflamação
2.
Int J Mol Sci ; 20(24)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835712

RESUMO

Mycobacteria produce two major lipoglycans, lipomannan (LM) and lipoarabinomannan (LAM), whose broad array of biological activities are tightly related to the fine details of their structure. However, the heterogeneity of these molecules in terms of internal and terminal covalent modifications and complex internal branching patterns represent significant obstacles to their structural characterization. Previously, an endo-α-(1→6)-D-mannanase from Bacillus circulans proved useful in cleaving the mannan backbone of LM and LAM, allowing the reducing end of these molecules to be identified as Manp-(1→6) [Manp-(1→2)]-Ino. Although first reported 45 years ago, no easily accessible form of this enzyme was available to the research community, a fact that may in part be explained by a lack of knowledge of its complete gene sequence. Here, we report on the successful cloning of the complete endo-α-(1→6)-D-mannanase gene from Bacillus circulans TN-31, herein referred to as emn. We further report on the successful production and purification of the glycosyl hydrolase domain of this enzyme and its use to gain further insight into its substrate specificity using synthetic mannoside acceptors as well as LM and phosphatidyl-myo-inositol mannoside precursors purified from mycobacteria.


Assuntos
Bacillus/enzimologia , Bacillus/genética , Clonagem Molecular , Genes Bacterianos , Manosiltransferases/genética , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Manosídeos/metabolismo , Manosiltransferases/química , Manosiltransferases/isolamento & purificação , Mycobacterium smegmatis/metabolismo , Domínios Proteicos , Especificidade por Substrato
3.
J Biol Chem ; 291(36): 18867-79, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27417139

RESUMO

The unique cell wall of mycobacteria is essential to their viability and the target of many clinically used anti-tuberculosis drugs and inhibitors under development. Despite intensive efforts to identify the ligase(s) responsible for the covalent attachment of the two major heteropolysaccharides of the mycobacterial cell wall, arabinogalactan (AG) and peptidoglycan (PG), the enzyme or enzymes responsible have remained elusive. We here report on the identification of the two enzymes of Mycobacterium tuberculosis, CpsA1 (Rv3267) and CpsA2 (Rv3484), responsible for this function. CpsA1 and CpsA2 belong to the widespread LytR-Cps2A-Psr (LCP) family of enzymes that has been shown to catalyze a variety of glycopolymer transfer reactions in Gram-positive bacteria, including the attachment of wall teichoic acids to PG. Although individual cpsA1 and cpsA2 knock-outs of M. tuberculosis were readily obtained, the combined inactivation of both genes appears to be lethal. In the closely related microorganism Corynebacterium glutamicum, the ortholog of cpsA1 is the only gene involved in this function, and its conditional knockdown leads to dramatic changes in the cell wall composition and morphology of the bacteria due to extensive shedding of cell wall material in the culture medium as a result of defective attachment of AG to PG. This work marks an important step in our understanding of the biogenesis of the unique cell envelope of mycobacteria and opens new opportunities for drug development.


Assuntos
Proteínas de Bactérias/genética , Parede Celular/metabolismo , Galactanos/metabolismo , Mycobacterium tuberculosis/metabolismo , Peptidoglicano/metabolismo , Ácidos Teicoicos/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Galactanos/genética , Mycobacterium tuberculosis/genética , Peptidoglicano/genética , Ácidos Teicoicos/genética
4.
Crit Rev Biochem Mol Biol ; 49(5): 361-99, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24915502

RESUMO

Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of the most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last 10 years in the discovery and development of novel inhibitors targeting their biogenesis.


Assuntos
Membrana Celular/metabolismo , Glicoconjugados/metabolismo , Mycobacterium tuberculosis/metabolismo , Cápsulas Bacterianas/química , Cápsulas Bacterianas/metabolismo , Glicoconjugados/química , Glicoproteínas/metabolismo , Humanos , Modelos Biológicos
5.
ACS Infect Dis ; 10(4): 1379-1390, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38511206

RESUMO

Two lipoglycans, lipomannan (LM) and lipoarabinomannan (LAM), play various, albeit incompletely defined, roles in the interactions of mycobacteria with the host. Growing evidence points to the modification of LM and LAM with discrete covalent substituents as a strategy used by these bacteria to modulate their biological activities. One such substituent, originally identified in Mycobacterium tuberculosis (Mtb), is a 5-methylthio-d-xylose (MTX) sugar, which accounts for the antioxidative properties of LAM. The widespread distribution of this motif across Mtb isolates from several epidemiologically important lineages have stimulated interest in MTX-modified LAM as a biomarker of tuberculosis infection. Yet, several lines of evidence indicate that MTX may not be restricted to Mtb and that this motif may substitute more acceptors than originally thought. Using a highly specific monoclonal antibody to the MTX capping motif of Mtb LAM, we here show that MTX motifs not only substitute the mannoside caps of LAM but also the mannan core of LM in Mtb. MTX substituents were also found on the LM and LAM of pathogenic, slow-growing nontuberculous mycobacteria. The presence of MTX substituents on the LM and LAM from Mtb enhances the pro-apoptotic properties of both lipoglycans on LPS-stimulated THP-1 macrophages. A comparison of the cytokines and chemokines produced by resting and LPS-activated THP-1 cells upon exposure to MTX-proficient versus MTX-deficient LM further indicates that MTX substituents confer anti-inflammatory properties upon LM. These findings add to our understanding of the glycan-based strategies employed by slow-growing pathogenic mycobacteria to alter the host immune response to infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Lipopolissacarídeos , Tuberculose/microbiologia
6.
J Biol Chem ; 287(47): 39933-41, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23038254

RESUMO

The biosynthesis of the major cell envelope glycoconjugates of Mycobacterium tuberculosis is topologically split across the plasma membrane, yet nothing is known of the transporters required for the translocation of lipid-linked sugar donors and oligosaccharide intermediates from the cytoplasmic to the periplasmic side of the membrane in mycobacteria. One of the mechanisms used by prokaryotes to translocate lipid-linked phosphate sugars across the plasma membrane relies on translocases that share resemblance with small multidrug resistance transporters. The presence of an small multidrug resistance-like gene, Rv3789, located immediately upstream from dprE1/dprE2 responsible for the formation of decaprenyl-monophosphoryl-ß-D-arabinose (DPA) in the genome of M. tuberculosis led us to investigate its potential involvement in the formation of the major arabinosylated glycopolymers, lipoarabinomannan (LAM) and arabinogalactan (AG). Disruption of the ortholog of Rv3789 in Mycobacterium smegmatis resulted in a reduction of the arabinose content of both AG and LAM that accompanied the accumulation of DPA in the mutant cells. Interestingly, AG and LAM synthesis was restored in the mutant not only upon expression of Rv3789 but also upon that of the undecaprenyl phosphate aminoarabinose flippase arnE/F genes from Escherichia coli. A bacterial two-hybrid system further indicated that Rv3789 interacts in vivo with the galactosyltransferase that initiates the elongation of the galactan domain of AG. Biochemical and genetic evidence is thus consistent with Rv3789 belonging to an AG biosynthetic complex, where its role is to reorient DPA to the periplasm, allowing this arabinose donor to then be used in the buildup of the arabinan domains of AG and LAM.


Assuntos
Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/fisiologia , Galactanos/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium tuberculosis/metabolismo , Arabinose/genética , Arabinose/metabolismo , Proteínas de Bactérias/genética , Galactanos/genética , Teste de Complementação Genética , Glicosilação , Lipopolissacarídeos/genética , Proteínas de Membrana Transportadoras/genética , Mutação , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética
7.
ACS Chem Biol ; 18(3): 595-604, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36856664

RESUMO

Bacteria from the genus Mycobacterium include pathogens that cause serious diseases in humans and remain as difficult infectious agents to treat. Central to these challenges are the composition and organization of the mycobacterial cell envelope, which includes unique and complex glycans. Inositol is an essential metabolite for mycobacteria due to its presence in the structural core of the immunomodulatory cell envelope glycolipids phosphatidylinositol mannoside (PIM) and PIM-anchored lipomannan (LM) and lipoarabinomannan (LAM). Despite their importance to mycobacterial physiology and pathogenesis, many aspects of PIM, LM, and LAM construction and dynamics remain poorly understood. Recently, probes that allow metabolic labeling and detection of specific mycobacterial glycans have been developed to investigate cell envelope assembly and dynamics. However, these tools have been limited to peptidoglycan, arabinogalactan, and mycolic acid-containing glycolipids. Herein, we report the development of synthetic azido inositol (InoAz) analogues as probes that can metabolically label PIMs, LM, and LAM in intact mycobacteria. Additionally, we leverage an InoAz probe to discover an inositol importer and catabolic pathway in Mycobacterium smegmatis. We anticipate that in the future, InoAz probes, in combination with bioorthogonal chemistry, will provide a valuable tool for investigating PIM, LM, and LAM biosynthesis, transport, and dynamics in diverse mycobacterial organisms.


Assuntos
Mycobacterium tuberculosis , Mycobacterium , Humanos , Mycobacterium/química , Lipopolissacarídeos/metabolismo , Polissacarídeos/metabolismo , Fosfatidilinositóis/metabolismo , Inositol/química , Glicolipídeos/metabolismo , Mycobacterium tuberculosis/metabolismo
8.
Nat Commun ; 14(1): 6694, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872138

RESUMO

We report on the existence of two phosphatidic acid biosynthetic pathways in mycobacteria, a classical one wherein the acylation of the sn-1 position of glycerol-3-phosphate (G3P) precedes that of sn-2 and another wherein acylations proceed in the reverse order. Two unique acyltransferases, PlsM and PlsB2, participate in both pathways and hold the key to the unusual positional distribution of acyl chains typifying mycobacterial glycerolipids wherein unsaturated substituents principally esterify position sn-1 and palmitoyl principally occupies position sn-2. While PlsM selectively transfers a palmitoyl chain to the sn-2 position of G3P and sn-1-lysophosphatidic acid (LPA), PlsB2 preferentially transfers a stearoyl or oleoyl chain to the sn-1 position of G3P and an oleyl chain to sn-2-LPA. PlsM is the first example of an sn-2 G3P acyltransferase outside the plant kingdom and PlsB2 the first example of a 2-acyl-G3P acyltransferase. Both enzymes are unique in their ability to catalyze acyl transfer to both G3P and LPA.


Assuntos
Aciltransferases , Mycobacterium , Aciltransferases/genética , Aciltransferases/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/genética , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Acilação , Mycobacterium/genética , Mycobacterium/metabolismo
9.
ACS Chem Biol ; 16(1): 20-26, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33382235

RESUMO

The arabinogalactan of Corynebacterianeae is a critical heteropolysaccharide that tethers outer membrane mycolic acids to peptidoglycan thus forming the characteristic cell wall core of these prokaryotes. An essential α-(1→5)-arabinosyltransferase, AftA, is responsible for the transfer of the first arabinofuranosyl (Araf) unit of the arabinan domain to the galactan backbone of arabinogalactan, but the number and precise position at which Araf residue(s) is/are added in mycobacteria remain ill-defined. Using membrane preparations from Mycobacterium smegmatis overexpressing aftA, farnesyl-phospho-arabinose as an Araf donor, and a series of synthetic galactan acceptors of various lengths, we here show that a single priming arabinosyl residue substitutes the C-5 position of a precisely positioned internal 6-linked galactofuranosyl residue of the galactan acceptors, irrespective of their length. This unexpected result suggests that, like the structurally related mycobacterial lipoarabinomannans, the arabinogalactan of mycobacteria may in fact harbor a single arabinan chain.


Assuntos
Galactanos/química , Glicolipídeos/química , Sondas Moleculares/química , Mycobacterium/química , Configuração de Carboidratos , Sequência de Carboidratos , Cromatografia Líquida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
10.
ACS Infect Dis ; 6(8): 2235-2248, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32657565

RESUMO

Lipoarabinomannan (LAM) and its biosynthetic precursors, phosphatidylinositol mannosides (PIMs) and lipomannan (LM) play important roles in the interactions of Mycobacterium tuberculosis with phagocytic cells and the modulation of the host immune response, but nothing is currently known of the impact of these cell envelope glycoconjugates on the physiology and pathogenicity of nontuberculous mycobacteria. We here report on the structures of Mycobacterium abscessus PIM, LM, and LAM. Intriguingly, these structures differ from those reported previously in other mycobacterial species in several respects, including the presence of a methyl substituent on one of the mannosyl residues of PIMs as well as the PIM anchor of LM and LAM, the size and branching pattern of the mannan backbone of LM and LAM, and the modification of the arabinan domain of LAM with both succinyl and acetyl substituents. Investigations into the biological significance of some of these structural oddities point to the important role of polysaccharide succinylation on the ability of M. abscessus to enter and survive inside human macrophages and epithelial cells and validate for the first time cell envelope polysaccharides as important modulators of the virulence of this emerging pathogen.


Assuntos
Mycobacterium abscessus , Mycobacterium tuberculosis , Parede Celular , Humanos , Macrófagos , Polissacarídeos
11.
ACS Infect Dis ; 6(8): 2143-2154, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32551551

RESUMO

Understanding the physiological processes underlying the ability of Mycobacterium abscessus to become a chronic pathogen of the cystic fibrosis (CF) lung is important to the development of prophylactic and therapeutic strategies to better control and treat pulmonary infections caused by these bacteria. Gene expression profiling of a diversity of M. abscessus complex isolates points to amino acids being significant sources of carbon and energy for M. abscessus in both CF sputum and synthetic CF medium and to the bacterium undergoing an important metabolic reprogramming in order to adapt to this particular nutritional environment. Cell envelope analyses conducted on the same representative isolates further revealed unexpected structural alterations in major cell surface glycolipids known as the glycopeptidolipids (GPLs). Besides showing an increase in triglycosylated forms of these lipids, CF sputum- and synthetic CF medium-grown isolates presented as yet unknown forms of GPLs representing as much as 10% to 20% of the total GPL content of the cells, in which the classical amino alcohol located at the carboxy terminal of the peptide, alaninol, is replaced with the branched-chain amino alcohol leucinol. Importantly, both these lipid changes were exacerbated by the presence of mucin in the culture medium. Collectively, our results reveal potential new drug targets against M. abscessus in the CF airway and point to mucin as an important host signal modulating the cell surface composition of this pathogen.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Glicolipídeos , Humanos , Mycobacterium abscessus/genética , Escarro
12.
Methods Mol Biol ; 1954: 175-186, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30864132

RESUMO

D-Arabinofuranose is a major glycosyl constituent of mycobacteria found in two essential cell envelope heteropolysaccharides, arabinogalactan and lipoarabinomannan. Seven different arabinosyltransferases at least are required to synthesize the arabinan domain of these two major glycans. Because of their interest from the perspective of drug development, these enzymes have been the object of intense investigations. In this chapter, we describe the protocols used to perform nonradioactive arabinosyltransferase assays with synthetic acceptor and donor substrates and characterize the enzymatic products of the reactions by mass spectrometry.


Assuntos
Proteínas de Bactérias/metabolismo , Ensaios Enzimáticos/métodos , Galactanos/metabolismo , Lipopolissacarídeos/metabolismo , Mycobacterium smegmatis/metabolismo , Pentosiltransferases/metabolismo , Arabinose/análogos & derivados , Arabinose/metabolismo , Vias Biossintéticas , Parede Celular/enzimologia , Parede Celular/metabolismo , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Mycobacterium smegmatis/enzimologia , Especificidade por Substrato
13.
ACS Chem Biol ; 12(3): 682-691, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28075556

RESUMO

Lipoarabinomannan (LAM) is a lipoglycan found in abundant quantities in the cell envelope of all mycobacteria. The nonreducing arabinan termini of LAM display species-specific structural microheterogeneity that impacts the biological activity of the entire molecule. Mycobacterium tuberculosis, for instance, produces mannoside caps made of one to three α-(1 → 2)-Manp-linked residues that may be further substituted with an α-(1 → 4)-linked methylthio-d-xylose (MTX) residue. While the biological functions and catalytic steps leading to the formation of the mannoside caps of M. tuberculosis LAM have been well established, the biosynthetic origin and biological relevance of the MTX motif remain elusive. We here report on the discovery of a five-gene cluster dedicated to the biosynthesis of the MTX capping motif of M. tuberculosis LAM, and on the functional characterization of two glycosyltransferases, MtxS and MtxT, responsible, respectively, for the production of decaprenyl-phospho-MTX (DP-MTX) and the transfer of MTX from DP-MTX to the mannoside caps of LAM. Collectively, our NMR spectroscopic and mass spectrometric analyses of mtxS and mtxT overexpressors and knockout mutants support a biosynthetic model wherein the conversion of 5'-methylthioadenosine, which is a ubiquitous byproduct of spermidine biosynthesis, into 5'-methylthioribose-1-phosphate precedes the formation of a 5'-methylthioribose nucleotide sugar, followed by the epimerization at C-3 of the ribose residue, and the transfer of MTX from the nucleotide sugar to decaprenyl-phosphate yielding the substrate for transfer onto LAM. The conservation of the MTX biosynthetic genes in a number of Actinomycetes suggests that this discrete glycosyl substituent may be more widespread in prokaryotes than originally thought.


Assuntos
Lipopolissacarídeos/metabolismo , Mycobacterium tuberculosis/metabolismo , Xilose/metabolismo , Cromatografia Líquida , Espectroscopia de Ressonância Magnética , Espectrometria de Massas em Tandem
14.
ACS Chem Biol ; 11(6): 1518-24, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27045860

RESUMO

The arabinosyltransferases responsible for the biosynthesis of the arabinan domains of two abundant heteropolysaccharides of the cell envelope of all mycobacterial species, lipoarabinomannan and arabinogalactan, are validated drug targets. Using a cell envelope preparation from Mycobacterium smegmatis as the enzyme source and di- and trimannoside synthetic acceptors, we uncovered a previously undetected arabinosyltransferase activity. Thin layer chromatography, GC/MS, and LC/MS/MS analyses of the major enzymatic product are consistent with the transfer of an arabinose residue to the 6 position of the terminal mannosyl residue at the nonreducing end of the acceptors. The newly identified enzymatic activity is resistant to ethambutol and could correspond to the priming arabinosyl transfer reaction that occurs during lipoarabinomannan biosynthesis.


Assuntos
Lipopolissacarídeos/biossíntese , Mycobacterium smegmatis/enzimologia , Pentosiltransferases/isolamento & purificação , Arabinose/química , Dissacarídeos/química , Ensaios Enzimáticos , Inibidores Enzimáticos/farmacologia , Etambutol/farmacologia , Oligossacarídeos/biossíntese , Pentosiltransferases/química , Ribose/química
15.
ACS Infect Dis ; 2(10): 702-713, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27737557

RESUMO

The MmpL family of proteins translocates complex (glyco)lipids and siderophores across the cell envelope of mycobacteria and closely related Corynebacteriaceae and plays important roles in the biogenesis of the outer membrane of these organisms. Despite their significance in the physiology and virulence of Mycobacterium tuberculosis, and from the perspective of developing novel antituberculosis agents, little is known about their structure and mechanism of translocation. In this study, the essential mycobacterial mycolic acid transporter, MmpL3, and its orthologue in Corynebacterium glutamicum, CmpL1, were investigated as prototypical MmpL proteins to gain insight into the transmembrane topology, tertiary and quaternary structures, and functional regions of this transporter family. The combined genetic, biochemical, and biophysical studies indicate that MmpL3 and CmpL1 are structurally similar to Gram-negative resistance-nodulation and division efflux pumps. They harbor 12 transmembrane segments interrupted by two large soluble periplasmic domains and function as homotrimers to export long-chain (C22-C90) mycolic acids, possibly in their acetylated form, esterified to trehalose. The mapping of a number of functional residues within the middle region of the transmembrane domain of MmpL3 shows a striking overlap with mutations associated with resistance to MmpL3 inhibitors. The results suggest that structurally diverse inhibitors of MmpL3 all target the proton translocation path of the transporter and that multiresistance to these inhibitors is enabled by conformational changes in MmpL3.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Corynebacterium glutamicum/química , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Humanos , Proteínas de Membrana Transportadoras/genética , Estrutura Molecular , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Ácidos Micólicos/química , Domínios Proteicos , Tuberculose/microbiologia
16.
PLoS Negl Trop Dis ; 7(11): e2502, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24244764

RESUMO

BACKGROUND: Mycobacterium ulcerans, a slow-growing environmental bacterium, is the etiologic agent of Buruli ulcer, a necrotic skin disease. Skin lesions are caused by mycolactone, the main virulence factor of M. ulcerans, with dermonecrotic (destruction of the skin and soft tissues) and immunosuppressive activities. This toxin is secreted in vesicles that enhance its biological activities. Nowadays, it is well established that the main reservoir of the bacilli is localized in the aquatic environment where the bacillus may be able to colonize different niches. Here we report that plant polysaccharides stimulate M. ulcerans growth and are implicated in toxin synthesis regulation. METHODOLOGY/PRINCIPAL FINDINGS: In this study, by selecting various algal components, we have identified plant-specific carbohydrates, particularly glucose polymers, capable of stimulating M. ulcerans growth in vitro. Furthermore, we underscored for the first time culture conditions under which the polyketide toxin mycolactone, the sole virulence factor of M. ulcerans identified to date, is down-regulated. Using a quantitative proteomic approach and analyzing transcript levels by RT-qPCR, we demonstrated that its regulation is not at the transcriptional or translational levels but must involve another type of regulation. M. ulcerans produces membrane vesicles, as other mycobacterial species, in which are the mycolactone is concentrated. By transmission electron microscopy, we observed that the production of vesicles is independent from the toxin production. Concomitant with this observed decrease in mycolactone production, the production of mycobacterial siderophores known as mycobactins was enhanced. CONCLUSIONS/SIGNIFICANCE: This work is the first step in the identification of the mechanisms involved in mycolactone regulation and paves the way for the discovery of putative new drug targets in the future.


Assuntos
Macrolídeos/metabolismo , Mycobacterium ulcerans/metabolismo , Proteômica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA