Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(7)2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30011926

RESUMO

Cell responses depend on the stimuli received by the surrounding extracellular environment, which provides the cues required for adhesion, orientation, proliferation, and differentiation at the micro and the nano scales. In this study, discontinuous microcones on silicon (Si) and continuous microgrooves on polyethylene terephthalate (PET) substrates were fabricated via ultrashort pulsed laser irradiation at various fluences, resulting in microstructures with different magnitudes of roughness and varying geometrical characteristics. The topographical models attained were specifically developed to imitate the guidance and alignment of Schwann cells for the oriented axonal regrowth that occurs in nerve regeneration. At the same time, positive replicas of the silicon microstructures were successfully reproduced via soft lithography on the biodegradable polymer poly(lactide-co-glycolide) (PLGA). The anisotropic continuous (PET) and discontinuous (PLGA replicas) microstructured polymeric substrates were assessed in terms of their influence on Schwann cell responses. It is shown that the micropatterned substrates enable control over cellular adhesion, proliferation, and orientation, and are thus useful to engineer cell alignment in vitro. This property is potentially useful in the fields of neural tissue engineering and for dynamic microenvironment systems that simulate in vivo conditions.


Assuntos
Materiais Biocompatíveis/química , Ácido Láctico/química , Polietilenotereftalatos/química , Ácido Poliglicólico/química , Células de Schwann/citologia , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Ácido Láctico/farmacologia , Lasers , Camundongos , Regeneração Nervosa/efeitos dos fármacos , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Células de Schwann/fisiologia , Silício/química , Propriedades de Superfície , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
2.
Tissue Eng Regen Med ; 20(1): 111-125, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36538193

RESUMO

BACKGROUND: The first step towards a successful neural tissue engineering therapy is the development of an appropriate scaffold and the in vitro study of the cellular response onto it. METHODS: Here, we fabricated nano- and micro- patterned Si surfaces via direct ultrafast laser irradiation, as well as their replicas in the biodegradable poly(lactide-co-glycolide), in order to use them as culture substrates for neuronal cells. The differentiation of neuro2a cells on the Si platforms and their replicas was studied both in a mono-culture and in a co-culture with glial cells (Schwann-SW10). RESULTS: It was found that the substrate's roughness inhibits the differentiation of the neuronal cells even in the presence of the differentiation medium, and the higher the roughness is, the more the differentiation gets limited. CONCLUSION: Our results highlight the importance of the substrate's topography for the controlled growth and differentiation of the neuronal cells and their further study via protein screening methods could shed light on the factors that lead to limited differentiation; thus, contributing to the long standing request for culture substrates that induce cells to differentiate.


Assuntos
Neuroglia , Engenharia Tecidual , Técnicas de Cocultura , Engenharia Tecidual/métodos , Diferenciação Celular , Lasers
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA