RESUMO
A novel synthetic approach is described for the targeted preparation of multivariate metal-organic frameworks (MTV-MOFs) with specific combinations of metal elements. This methodology is based on the use of molecular complexes that already comprise desired metal-atom combinations, as building units for the MTV-MOF synthesis. These units are transformed into the MOF structural constituents through a ligand/linker exchange process that involves structural modifications while preserving their originally encoded atomic combination. Thus, through the use of heterometallic ring-shaped molecules combining gallium and nickel or cobalt, we have obtained MOFs with identical combinations of the metal elements, now incorporated in the rod-shaped secondary building unit, as confirmed with a combination of X-ray and electron diffraction, electron microscopy, and X-ray absorption spectroscopy techniques.
Assuntos
Gálio , Estruturas Metalorgânicas , Cobalto , Gálio/química , Ligantes , Estruturas Metalorgânicas/química , NíquelRESUMO
Bismuth metal-organic frameworks (MOFs) as heterogeneous catalysts are scarce, and there is little knowledge on the influence of the MOF features on their resulting activity and behavior. Here, we present the synthesis, characterization, and catalytic activity in the one-pot multicomponent Strecker reaction with ketones of three new MOFs prepared with the combination of indium or bismuth and 4,4',4'',4'''-methanetetrayltetrabenzoic acid. One of them, denoted BiPF-7, is very robust and chemically stable, and demonstrates a high activity in the formation of the desired α-aminonitriles. The interaction of the catalytic substrates with the metal centers in this MOF has been crystallographically characterized, showcasing a concerted framework adaptability process that involves structural changes in framework components that are not directly involved in the binding of the guests.