Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Bioorg Chem ; 144: 107112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237390

RESUMO

We report here the virtual screening design, synthesis and activity of eight new inhibitors of SphK1. For this study we used a pre-trained Graph Convolutional Network (GCN) combined with docking calculations. This exploratory analysis proposed nine compounds from which eight displayed significant inhibitory effect against sphingosine kinase 1 (SphK1) demonstrating a high level of efficacy for this approach. Four of these compounds also displayed anticancer activity against different tumor cell lines, and three of them (5), (6) and (7) have shown a wide inhibitory action against many of the cancer cell line tested, with GI50 below 5 µM, being (5) the most promising with TGI below 10 µM for the half of cell lines. Our results suggest that the three most promising compounds reported here are the pyrimidine-quinolone hybrids (1) and (6) linked by p-aminophenylsulfanyl and o-aminophenol fragments respectively, and (8) without such aryl linker. We also performed an exhaustive study about the molecular interactions that stabilize the different ligands at the binding site of SphK1. This molecular modeling analysis was carried out by using combined techniques: docking calculations, MD simulations and QTAIM analysis. In this study we also included PF543, as reference compound, in order to better understand the molecular behavior of these ligands at the binding site of SphK1.These results provide useful information for the design of new inhibitors of SphK1 possessing these structural scaffolds.


Assuntos
Antineoplásicos , Fosfotransferases (Aceptor do Grupo Álcool) , Quinolonas , Quinolonas/farmacologia , Inibidores de Proteínas Quinases , Antineoplásicos/química , Modelos Moleculares , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Relação Estrutura-Atividade , Estrutura Molecular
2.
J Comput Chem ; 43(19): 1298-1312, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35638694

RESUMO

We report here for the first time the potential energy surfaces (PES) of phenyletilamine (PEA) and meta-tyramine (m-OH-PEA) at the D2 dopamine receptor (D2DR) binding site. PESs not only allow us to observe all the critical points of the surface (minimums, maximums, and transition states), but also to note the ease or difficulty that each local minima have for their conformational inter-conversions and therefore know the conformational flexibility that these ligands have in their active sites. Taking advantage of possessing this valuable information, we analyze how accurate a standard docking study is in these cases. Our results indicate that although we have to be careful in how to carry out this type of study and to consider performing some extra-simulations, docking calculations can be satisfactory. In order to analyze in detail the different molecular interactions that are stabilizing the different ligand-receptor (L-R) complexes, we carried out quantum theory of atoms in molecules (QTAIM) computations and NMR shielding calculations. Although some of these techniques are a bit tedious and require more computational time, our results demonstrate the importance of performing computational simulations using different types of combined techniques (docking/MD/hybrid QM-MM/QTAIM and NMR shielding calculations) in order to obtain more accurate results. Our results allow us to understand in details the molecular interactions stabilizing and destabilizing the different L-R complexes reported here. Thus, the different activities observed for dopamine (DA), m-OH-PEA, and PEA can be clearly explained at molecular level.


Assuntos
Dopamina , Teoria Quântica , Sítios de Ligação , Domínio Catalítico , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica
3.
J Chem Inf Model ; 62(24): 6494-6507, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36044012

RESUMO

Protein pockets that form a halogen bond (X-bond) with a halogenated ligand molecule simultaneously form other (mainly hydrophobic) interactions with the halogen atom that can be considered as its "X-bond environment" (XBenv). Most studies in the field have focused on the X-bond, with the properties of the XBenv usually overlooked. In this work, we derived a protocol that evaluates the XBenv strength as a measure of the propensity of a protein pocket to host an X-bond. The charge density-based topological descriptors in combination with machine learning tools were employed to predict formation and strength of the interactions that conform the XBenv as a function of their geometrical parameters. On the basis of these results, we propose that the XBenv can be used as a footprint to judge the chance of a protein pocket to form an X-bond.


Assuntos
Halogênios , Proteínas , Halogênios/química , Proteínas/química , Ligantes
4.
J Chem Phys ; 155(5): 054307, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34364326

RESUMO

Within the framework of the density functional theory approach, we studied the relationship between the chemical nature of intramolecular hydrogen bonds (HBs) and nuclear magnetic resonance (NMR) parameters, J-couplings and 1H-chemical shifts [δ(1H)], of the atoms involved in such bonds in o-hydroxyaryl Schiff bases during the proton transfer process. For the first time, the shape of the dependence of the degree of covalence in HBs on 1J(N-H), 1J(O-H), 2hJ(O-N), and δ(1H) during the proton transfer process in o-hydroxyaryl Schiff bases was analyzed. Parameters obtained from Bader's theory of atoms in molecules were used to assess the dependence of covalent character in HBs with both the NMR properties. The influence of π-electronic delocalization on 2hJ(N-O) under the proton transfer process was investigated. 2hJ(O-N) in a Mannich base was also studied in order to compare the results with an unsaturated system. In addition, substituent effects on the phenolic ring were investigated. Our results indicate that the covalent character of HBs on both sides of the transition state undergoes a smooth exponential increase as the δ(1H) moves downfield. The degree of covalence of the N⋯H (O⋯H) bond increases linearly as 1J(N-H) (1J(O-H)) becomes more negative, even after reaching the transition state. Non-vanishing values of spin dipolar (SD) and paramagnetic spin orbital terms of 2hJ(O-N) show that π-electronic delocalization has a non-negligible effect on tautomeric equilibrium and gives evidence of the presence of the resonance assisted HB.Variation of the SD term of 2hJ(O-N) follows a similar pattern as the change in the para-delocalization aromaticity index of the chelate ring.

5.
J Comput Chem ; 41(21): 1898-1911, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32511790

RESUMO

We report an exhaustive conformational and electronic study on dopamine (DA) interacting with the D2 dopamine receptor (D2 DR). For the first time, the complete surface of the conformational potential energy of the complex DA/D2 DR is reported. Such a surface was obtained through the use of QM/MM calculations. A detailed study of the molecular interactions that stabilize and destabilize the different molecular complexes was carried out using two techniques: Quantum Theory of Atoms in Molecules computations and nuclear magnetic shielding constants calculations. A comparative study of the behavior of DA in the gas phase, aqueous solution, and in the active site of D2 DR has allowed us to evaluate the degree of deformation suffered by the ligand and, therefore, analyze how rustic are the lock-key model and the induced fit theory in this case. Our results allow us to propose one of the conformations obtained as the "biologically relevant" conformation of DA when it is interacting with the D2 DR.


Assuntos
Teoria da Densidade Funcional , Dopamina/química , Receptores de Dopamina D2/química , Elétrons , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
6.
Bioorg Chem ; 103: 104145, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32801082

RESUMO

The oncogenic mutated kinase BRAFV600E is an attractive molecular target because it is expressed in several human cancers, including melanoma. To present, only three BRAF small inhibitors are approved by the FDA for the treatment of patients with metastatic melanoma: Vemurafenib, Dabrafenib and Encorafenib. Although many protocol treatments have been probed in clinical trials, BRAF inhibition has a limited effectiveness because patients invariably develop resistance and secondary toxic effects associated with the therapy. These limitations highlight the importance of designing new and better inhibitors with different structures that could establish different interactions in the active site of the enzyme and therefore decrease resistance progress. Considering the data from our previous report, here we studied two series of derivatives of structural scaffolds as potential BRAF inhibitors: hydroxynaphthalenecarboxamides and substituted piperazinylpropandiols. Our results indicate that structural analogues of substituted piperazinylpropandiols do not show significantly better activities to that previously reported. In contrast, the hydroxynaphthalenecarboxamides derivatives significantly inhibited cell viability and ERK phosphorylation, a measure of BRAF activity, in Lu1205 BRAFV600E melanoma cells. In order to better understand these experimental results, we carried out a molecular modeling study using different combined techniques: docking, MD simulations and quantum theory of atoms in molecules (QTAIM) calculations. Thus, by using this approach we determined that the molecular interactions that stabilize the different molecular complexes are closely related to Vemurafenib, a well-documented BRAF inhibitor. Furthermore, we found that bi-substituted compounds may interact more strongly respect to the mono-substituted analogues, by establishing additional interactions with the DFG-loop at the BRAF-active site. On the bases of these results we synthesized and tested a new series of hydroxynaphthalenecarboxamides bi-substituted. Remarkably, all these compounds displayed significant inhibitory effects on the bioassays performed. Thus, the structural information reported here is important for the design of new BRAFV600E inhibitors possessing this type of structural scaffold.


Assuntos
Antineoplásicos/uso terapêutico , Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Antineoplásicos/farmacologia , Humanos , Modelos Moleculares , Fosforilação
7.
Bioorg Chem ; 91: 103125, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31401373

RESUMO

The identification of the V600E activating mutation in the protein kinase BRAF in around 50% of melanoma patients has driven the development of highly potent small inhibitors (BRAFi) of the mutated protein. To date, Dabrafenib and Vemurafenib, two specific BRAFi, have been clinically approved for the treatment of metastatic melanoma. Unfortunately, after the initial response, tumors become resistant and patients develop a progressive and lethal disease, making imperative the development of new therapeutic options. The main objective of this work was to find new BRAF inhibitors with different structural scaffolds than those of the known inhibitors. Our study was carried out in different stages; in the first step we performed a virtual screening that allowed us to identify potential new inhibitors. In the second step, we synthesized and tested the inhibitory activity of the novel compounds founded. Finally, we conducted a molecular modelling study that allowed us to understand interactions at the molecular level that stabilize the formation of the different molecular complexes. Our theoretical and experimental study allowed the identification of four new structural scaffolds, which could be used as starting structures for the design and development of new inhibitors of BRAF. Our experimental data indicate that the most active compounds reduced significantly ERK½ phosphorylation, a measure of BRAF inhibition, and cell viability. Thus, from our theoretical and experimental results, we propose new substituted hydroxynaphthalenecarboxamides, N-(hetero)aryl-piperazinylhydroxyalkylphenylcarbamates, substituted piperazinylethanols and substituted piperazinylpropandiols as initial structures for the development of new inhibitors for BRAF. Moreover, by performing QTAIM analysis, we are able to describe in detail the molecular interactions that stabilize the different Ligand-Receptor complexes. Such analysis indicates which portion of the different molecules must be changed in order to obtain an increase in the binding affinity of these new ligands.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Vemurafenib/farmacologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-39002622

RESUMO

It is well known that C. d. terrificus venom causes pathophysiological effects such as neuropathies, coagulopathies, and even death. Previous studies have reported that ASC16 can interact with monomeric phospholipases A2 from the venom of various snake species (e.g., Vipera russelli and Echis carinatus). As a result, ASC16 has been proposed as an inhibitor of the toxic effects induced by the heterodimeric complex (crotoxin) and other components of the venom of C. d. terrificus. To investigate this further, in silico studies were designed using the crotoxin (CTX) protein complex as a model, and experimental assays were conducted to evaluate the inhibitory effect of ASC16 on CTX, as well as on other venom enzymes such as thrombin-like enzyme (TLE), phosphodiesterase (PDE) and l-aminoxidase (LAAO). For in vitro assays, specific substrates were used, and lethal activity was measured over 48 h using an in vivo murine experimental model (CF01). In silico studies have indicated that the hydrophilic portion of ASC16 adopts a stable conformation while interacting with the catalytic site of crotoxin. At the highest concentrations, ASC16 significantly inhibited the activities of PLA2 (40.89 ± 0.09 %), TLE (11.03 ± 0.69 %), PDE (51.33 ± 2.83 %), and LAAO (56.79 ± 2.91 %). Furthermore, ASC16 neutralized the 2 LD50 lethality of crotalic venom. These findings lay the groundwork for designing promising adjuvants that can facilitate the incorporation of a larger quantity of proteins in immunization schemes. Consequently, this approach aims to achieve higher antibody titers, reduce the number of required immunizations, and minimize local damage in the producer animal.


Assuntos
Crotalus , Crotoxina , Serpentes Peçonhentas , Animais , Masculino , Camundongos , Antivenenos/farmacologia , Crotoxina/antagonistas & inibidores , Crotoxina/toxicidade , Simulação de Acoplamento Molecular , Fosfolipases A2/toxicidade , Fosfolipases A2/metabolismo , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/farmacologia
9.
Chem Biol Interact ; 402: 111217, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197813

RESUMO

Snake venoms are a complex mixture of proteins and polypeptides that represent a valuable source of potential molecular tools for understanding physiological processes for the development of new drugs. In this study two major PLA2s, named PLA2-I (Asp49) and PLA2-II (Lys49), isolated from the venom of Bothrops diporus from Northeastern Argentina, have shown cytotoxic effects on LM3 murine mammary tumor cells, with PLA2-II-like exhibiting a stronger effect compared to PLA2-I. At sub-cytotoxic levels, both PLA2s inhibited adhesion, migration, and invasion of these adenocarcinoma cells. Moreover, these toxins hindered tubulogenesis in endothelial cells, implicating a potential role in inhibiting tumor angiogenesis. All these inhibitory effects were more pronounced for the catalytically-inactive toxin. Additionally, in silico studies strongly suggest that this PLA2-II-like myotoxin could effectively block fibronectin binding to the integrin receptor, offering a dual advantage over PLA2-I in interacting with the αVß3 integrin. In conclusion, this study reports for the first time, integrating both in vitro and in silico approaches, a comparative analysis of the antimetastatic and antiangiogenic potential effects of two isoforms, an Asp49 PLA2-I and a Lys49 PLA2-II-like, both isolated from Bothrops diporus venom.


Assuntos
Bothrops , Venenos de Crotalídeos , Fosfolipases A2 , Animais , Bothrops/metabolismo , Camundongos , Fosfolipases A2/metabolismo , Fosfolipases A2/química , Fosfolipases A2/farmacologia , Linhagem Celular Tumoral , Venenos de Crotalídeos/química , Movimento Celular/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Neovascularização Patológica/metabolismo , Adesão Celular/efeitos dos fármacos , Feminino , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Metástase Neoplásica , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/antagonistas & inibidores , Fibronectinas/metabolismo , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/química , Humanos , Lisina/química , Lisina/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/patologia , Neoplasias Mamárias Animais/metabolismo , Angiogênese
10.
J Chem Inf Model ; 53(8): 2018-32, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-23834278

RESUMO

A molecular modeling study on dihydrofolate reductase (DHFR) inhibitors was carried out. By combining molecular dynamics simulations with semiempirical (PM6), ab initio, and density functional theory (DFT) calculations, a simple and generally applicable procedure to evaluate the binding energies of DHFR inhibitors interacting with the human enzyme is reported here, providing a clear picture of the binding interactions of these ligands from both structural and energetic viewpoints. A reduced model for the binding pocket was used. This approach allows us to perform more accurate quantum mechanical calculations as well as to obtain a detailed electronic analysis using the quantum theory of atoms in molecules (QTAIM) technique. Thus, molecular aspects of the binding interactions between inhibitors and the DHFR are discussed in detail. A significant correlation between binding energies obtained from DFT calculations and experimental IC50 values was obtained, predicting with an acceptable qualitative accuracy the potential inhibitor effect of nonsynthesized compounds. Such correlation was experimentally corroborated synthesizing and testing two new inhibitors reported in this paper.


Assuntos
Antagonistas do Ácido Fólico/farmacologia , Simulação de Dinâmica Molecular , Teoria Quântica , Tetra-Hidrofolato Desidrogenase/metabolismo , Elétrons , Humanos , Conformação Proteica , Reprodutibilidade dos Testes , Tetra-Hidrofolato Desidrogenase/química , Termodinâmica
11.
J Ethnopharmacol ; 302(Pt A): 115889, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36334817

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lauraceae family includes Nectandra angustifolia a species widely used in the folk medicine of South America against various maladies. It is commonly used to treat different types of processes like inflammation, pain, and snakebites. Snakes of the Bothrops genus are responsible for about 97% of the ophidic accidents in northeastern Argentina. AIM OF THE STUDY: To evaluate the anti-snake activity of the phytochemicals present in N. angustifolia extracts, identify the compounds, and evaluate their inhibitory effect on phospholipase A2 (PLA2) with in vitro and in silico assays. METHODS: Seasonal variations in the alexiteric potential of aqueous, ethanolic and hexanic extracts were evaluated by inhibition of coagulant, haemolytic, and cytotoxic effects of B. diporus venom. The chemical identity of an enriched fraction obtained by bio-guided fractioning was established by UPLC-MS/MS analysis. Molecular docking studies were carried out to investigate the binding mechanisms of the identified compounds to PLA2 enzyme from snake venom. RESULTS: All the extracts inhibited venom coagulant activity. However, spring ethanolic extract achieved 100% inhibition of haemolytic activity. Bio-guide fractioning led to an enriched fraction (F4) with the highest haemolytic inhibition. Five flavonoids were identified in this fraction; molecular docking and Molecular Dynamics (MD) simulations indicated the binding mechanisms of the identified compounds. The carbohydrates present in some of the compounds had a critical effect on the interaction with PLA2. CONCLUSION: This study shows, for the first time, which compounds are responsible for the anti-snake activity in Nectandra angustifolia based on in vitro and in silico assays. The results obtained in this work support the traditional use of this species as anti-snake in folk medicine.


Assuntos
Bothrops , Venenos de Crotalídeos , Lauraceae , Animais , Flavonoides/farmacologia , Simulação de Acoplamento Molecular , Cromatografia Líquida , Extratos Vegetais/uso terapêutico , Espectrometria de Massas em Tandem , Bothrops/fisiologia , Fosfolipases A2/metabolismo
12.
J Chem Inf Model ; 52(1): 99-112, 2012 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-22146008

RESUMO

We report here an exhaustive and complete conformational study on the conformational potential energy hypersurface (PEHS) of dopamine (DA) interacting with the dopamine D2 receptor (D2-DR). A reduced 3D model for the binding pocket of the human D2-DR was constructed on the basis of the theoretical model structure of bacteriorhodopsin. In our reduced model system, only 13 amino acids were included to perform the quantum mechanics calculations. To obtain the different complexes of DA/D2-DR, we combined semiempirical (PM6), DFT (B3LYP/6-31G(d)), and QTAIM calculations. The molecular flexibility of DA interacting with the D2-DR was evaluated from potential energy surfaces and potential energy curves. A comparative study between the molecular flexibility of DA in the gas phase and at D2-DR was carried out. In addition, several molecular dynamics simulations were carried out to evaluate the molecular flexibility of the different complexes obtained. Our results allow us to postulate the complexes of type A as the "biologically relevant conformations" of DA. In addition, the theoretical calculations reported here suggested that a mechanistic stepwise process takes place for DA in which the protonated nitrogen group (in any conformation) acts as the anchoring portion, and this process is followed by a rapid rearrangement of the conformation allowing the interaction of the catecholic OH groups.


Assuntos
Dopamina/química , Simulação de Dinâmica Molecular , Receptores de Dopamina D2/química , Bacteriorodopsinas/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Conformação Molecular , Teoria Quântica , Termodinâmica
13.
J Phys Chem A ; 115(18): 4701-10, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21506592

RESUMO

In this work, mono- and di-hydrated complexes of the formamide were studied. The calculations were performed at the MP2/6-311++G(d,p) level of approximation. The atoms in molecules theory (AIM), based on the topological properties of the electronic density distribution, was used to characterize the different types of bonds. The analysis of the hydrogen bonds (H-bonds) in the most stable mono- and di-hydrated formamide complexes shows a mutual reinforcement of the interactions, and some of these complexes can be considered as "bifunctional hydrogen bonding hydration complexes". In addition, we analyzed how the strength and the nature of the interactions, in mono-hydrated complexes, are modified by the presence of a second water molecule in di-hydrated formamide complexes. Structural changes, cooperativity, and electron density redistributions demonstrate that the H-bonds are stronger in the di-hydrated complexes than in the corresponding mono-hydrated complexes, wherein the σ- and π-electron delocalization were found. To explain the nature of such interactions, we carried out the atoms in molecules theory in conjunction with reduced variational space self-consistent field (RVS) decomposition analysis. On the basis of the local Virial theorem, the characteristics of the local electron energy density components at the bond critical points (BCPs) (the 1/4∇ (2)ρ(b) component of electron energy density and the kinetic energy density) were analyzed. These parameters were used in conjunction with the electron density and the Laplacian of the electron density to analyze the characteristics of the interactions. The analysis of the interaction energy components for the systems considered indicates that the strengthening of the hydrogen bonds is manifested by an increased contribution of the electrostatic energy component represented by the kinetic energy density at the BCP.


Assuntos
Formamidas/química , Ligação de Hidrogênio , Estrutura Molecular , Teoria Quântica , Água/química
14.
J Phys Chem A ; 114(8): 2855-63, 2010 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-20136161

RESUMO

In this work, the cooperative effects implicated in bifunctional hydrogen bonds (H-bonds) were studied (in monohydrated six-membered cycloether) within the framework of the atoms in molecules (AIM) theory and of the natural bond orbitals (NBO) analysis. The study was carried out in complexes formed by six-membered cycloether compounds (tetrahydropyrane, 1,4-dioxane, and 1,3-dioxane) and a water molecule. These compounds were used as model systems instead of more complicated molecules of biological importance. All the results were obtained at the second-order Møller-Plesset (MP2) level theory using a 6-311++G(d,p) basis set. Attention was focused on the indicators of the cooperative effects that arise when a water molecule interacts simultaneously with a polar and a nonpolar portion of a six-membered cycloether (via bifunctional hydrogen bonds) and compared with conventional H-bonds where the water molecule only interacts with the polar portion of the cycloether. Different indicators of H-bonds strength, such as structural and spectroscopic data, electron charge density, population analysis, hyperconjugation energy and charge transference, consistently showed significant cooperative effects in bifunctional H-bonds. From the AIM, as well as from the NBO analysis, the obtained results allowed us to state that in the monohydrated six-membered cycloether, where the water molecule plays a dual role, as proton acceptor and proton donor, a mutual reinforcement of the two interactions occurs. Because of this feature, the complexes engaged by bifunctional hydrogen bonds are more stabilized than the complexes linked by conventional hydrogen bonds.

15.
ACS Omega ; 4(22): 19582-19594, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31788588

RESUMO

Trypanosoma cruzi, a flagellate protozoan parasite, is responsible for Chagas disease. The parasite major cysteine protease, cruzain (Cz), plays a vital role at every stage of its life cycle and the active-site region of the enzyme, similar to those of other members of the papain superfamily, is well characterized. Taking advantage of structural information available in public databases about Cz bound to known covalent inhibitors, along with their corresponding activity annotations, in this work, we performed a deep analysis of the molecular interactions at the Cz binding cleft, in order to investigate the enzyme inhibition mechanism. Our toolbox for performing this study consisted of the charge density topological analysis of the complexes to extract the molecular interactions and machine learning classification models to relate the interactions with biological activity. More precisely, such a combination was useful for the classification of molecular interactions as "active-like" or "inactive-like" according to whether they are prevalent in the most active or less active complexes, respectively. Further analysis of interactions with the help of unsupervised learning tools also allowed the understanding of how these interactions come into play together to trigger the enzyme into a particular conformational state. Most active inhibitors induce some conformational changes within the enzyme that lead to an overall better fit of the inhibitor into the binding cleft. Curiously, some of these conformational changes can be considered as a hallmark of the substrate recognition event, which means that most active inhibitors are likely recognized by the enzyme as if they were its own substrate so that the catalytic machinery is arranged as if it is about to break the substrate scissile bond. Overall, these results contribute to a better understanding of the enzyme inhibition mechanism. Moreover, the information about main interactions extracted through this work is already being used in our lab to guide docking solutions in ongoing prospective virtual screening campaigns to search for novel noncovalent cruzain inhibitors.

16.
Mol Inform ; 37(12): e1800053, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30051611

RESUMO

HIV-1 protease (HIV-PR) performs a vital step in the virus life cycle which makes it an excellent target for drug therapy. However, due to the error-prone of HIV reverse transcriptase, mutations in HIV-PR often occur, inducing drug-resistance to inhibitors. Some HIV-PR mutations can make the flaps of the enzyme more flexible thus increasing the flaps opening rate and inhibitor releasing. It has been shown that by targeting novel binding sites on HIV-PR with small molecules, it is possible to alter the equilibrium of flap conformational states. A previous fragment-based crystallographic screen have found two novel binding sites for small fragments in the inhibited, closed form of HIV-PR, termed flap and exo sites. While these experiments were performed in wild type HIV-PR, it still remains to be proven whether these small fragments can stabilize the closed conformation of flaps in resistant forms of the enzyme. Here we performed Molecular Dynamics simulations of wild type and mutant form of HIV-PR bound to inhibitor TL-3. Simulations show that on going from wild type to 6X mutant the equilibrium shifts from closed to semi-open conformation of flaps. However, when fragment Br6 is placed at flap site of mutant form, the enzyme is restored back to closed conformation. This finding supports the hypothesis that allosteric inhibitors, together with active site inhibitors could increase the number of point mutations necessary for appreciable clinical resistance to AIDS therapy.


Assuntos
Farmacorresistência Viral , Inibidores da Protease de HIV/química , Protease de HIV/química , Simulação de Dinâmica Molecular , Mutação , Sítios de Ligação , Protease de HIV/genética , Protease de HIV/metabolismo , Inibidores da Protease de HIV/farmacologia , Ligação Proteica
17.
J Biomol Struct Dyn ; 35(2): 413-426, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26813690

RESUMO

We report here two new small-size peptides acting as modulators of the ß-site APP cleaving enzyme 1 (BACE1) exosite. Ac-YPYFDPL-NH2 and Ac-YPYDIPL-NH2 displayed a moderate but significant inhibitory effect on BACE1. These peptides were obtained from a molecular modeling study. By combining MD simulations with ab initio and DFT calculations, a simple and generally applicable procedure to evaluate the binding energies of small-size peptides interacting with the exosite of the BACE1 is reported here. The structural aspects obtained for the different complexes were analyzed providing a clear picture about the binding interactions of these peptides. These interactions have been investigated within the framework of the density functional theory and the quantum theory of atoms in molecules using a reduced model. Although the approach used here was traditionally applied to the study of noncovalent interactions in small molecules complexes in gas phase, we show, through in this work, that this methodology is also a very powerful tool for the study of biomolecular complexes, providing a very detailed description of the binding event of peptides modulators at the exosite of BACE1.


Assuntos
Secretases da Proteína Precursora do Amiloide/química , Ácido Aspártico Endopeptidases/química , Sítios de Ligação , Desenho de Fármacos , Modelos Moleculares , Peptídeos/química , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Domínios e Motivos de Interação entre Proteínas , Relação Quantitativa Estrutura-Atividade
18.
J Mol Model ; 23(9): 273, 2017 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-28866777

RESUMO

A series of tetrahydroisoquinolines functionalized with carbamates is reported here as highly selective ligands on the dopamine D2 receptor. These compounds were selected by means of a molecular modeling study. The studies were carried out in three stages: first an exploratory study was carried out using combined docking techniques and molecular dynamics simulations. According to these results, the bioassays were performed; these experimental studies corroborated the results obtained by molecular modeling. In the last stage of our study, a QTAIM analysis was performed in order to determine the main molecular interactions that stabilize the different ligand-receptor complexes. Our results show that the adequate use of combined simple techniques is a very useful tool to predict the potential affinity of new ligands at dopamine D1 and D2 receptors. In turn the QTAIM studies show that they are very useful to evaluate in detail the molecular interactions that stabilize the different ligand-receptor complexes; such information is crucial for the design of new ligands.


Assuntos
Carbamatos/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D2/agonistas , Tetra-Hidroisoquinolinas/farmacologia , Humanos , Ligantes , Receptores de Dopamina D1/antagonistas & inibidores
19.
Eur J Med Chem ; 139: 461-481, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28822281

RESUMO

Sphingosine kinase 1 (SphK1), the enzyme that produces the bioactive sphingolipid metabolite, sphingosine-1-phosphate, is a promising new molecular target for therapeutic intervention in cancer and inflammatory diseases. In view of its importance, the main objective of this work was to find new and more potent inhibitors for this enzyme possessing different structural scaffolds than those of the known inhibitors. Our theoretical and experimental study has allowed us to identify two new structural scaffolds (three new compounds), which could be used as starting structures for the design and then the development of new inhibitors of SphK1. Our study was carried out in different steps: virtual screening, synthesis, bioassays and molecular modelling. From our results, we propose a new dihydrobenzo[b]pyrimido[5,4-f]azepine and two alkyl{3-/4-[1-hydroxy-2-(4-arylpiperazin-1-yl)ethyl]phenyl}carbamates as initial structures for the development of new inhibitors. In addition, our molecular modelling study using QTAIM calculations, allowed us to describe in detail the molecular interactions that stabilize the different Ligand-Receptor complexes. Such analyses indicate that the cationic head of the different compounds must be refined in order to obtain an increase in the binding affinity of these ligands.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Relação Dose-Resposta a Droga , Modelos Moleculares , Estrutura Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Teoria Quântica , Relação Estrutura-Atividade
20.
Curr Protein Pept Sci ; 17(2): 156-68, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26521954

RESUMO

The structure-based drug design has been an extremely useful technique used for searching and developing of new therapeutic agents in various biological systems. In the case of AD, this approach has been difficult to implement. Among other several causes, the main problem might be the lack of a specific stable and reliable molecular target. In this paper the results obtained using a pentameric amyloid beta (Aß) model as a molecular target are discussed. Our MD simulations have shown that this system is relatively structured and stable, displaying a lightly conformational flexibility during 2.0 µs of simulation time. This study allowed us to distinguish characteristic structural features in specific regions of the pentamer which should be taken into account when choosing this model as a molecular target. This represents a clear advantage compared to the monomer or dimer models which are highly flexible structures with large numbers of possible conformers. Using this pentameric model we performed two types of studies usually carried out on a molecular target: a virtual screening and the design on structural basis of new mimetic peptides with antiaggregant properties. Our results indicate that this pentameric model might be a good molecular target for these particular studies of molecular modeling. Details about the predictive power of our virtual screening as well as about the molecular interactions that stabilize the mimetic peptide-pentamer Aß complexes are discussed in this paper.


Assuntos
Desenho de Fármacos , Modelos Moleculares , Agregados Proteicos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Simulação por Computador , Bases de Dados de Proteínas , Humanos , Curva ROC , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA